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Ingredients in the Brunn-Minkowski inequality

The Minkowski addition A + B of two sets A,B ⊂ Rn is

A + B =
{
a + b : a ∈ A, b ∈ B

}

vol(K ) = volume (Lebesgue measure) of K ⊂ Rn.

|A| = cardinality of A ⊂ Rn finite.

Gn(M) = |M ∩ Zn| = lattice point enumerator of M ⊂ Rn bounded.
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The Brunn-Minkowski inequality

Relating the volume with the Minkowski addition of compact sets (not
necessarily convex), one is led to the famous Brunn-Minkowski inequality:

The Brunn-Minkowski inequality (additive version)

Let K , L ⊂ Rn be (non-empty) compact sets. Then

vol(K + L)1/n ≥ vol(K )1/n + vol(L)1/n.

From the homogeneity of the volume, this inequality is equivalent to the
following one:

The Brunn-Minkowski inequality ((1/n)-concave version)

Let K , L ⊂ Rn be (non-empty) compact sets and let λ ∈ (0, 1). Then

vol
(
(1− λ)K + λL)1/n ≥ (1− λ)vol(K )1/n + λvol(L)1/n.
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Notation: p-sums and p-means

Sp denotes the p-sum of two non-negative numbers a, b, for p 6= 0:

Sp(a, b) =


(
ap + bp

)1/p
, if p 6= 0,±∞,

max{a, b} if p = ∞,

min{a, b} if p = −∞;

if ab > 0, and Sp(a, b) = 0 when ab = 0.

Mp denotes the p-mean of two non-negative numbers a, b:

Mp(a, b, λ) =



(
(1− λ)ap + λbp

)1/p
, if p 6= 0,±∞,

a1−λbλ if p = 0,

max{a, b} if p = ∞,

min{a, b} if p = −∞;

if ab > 0, and Mp(a, b, λ) = 0 when ab = 0.
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The functional version of the Brunn-Minkowski inequality

The Borell-Brascamp-Lieb inequality

Let −1/n ≤ p ≤ ∞ and let f , g , h : Rn −→ R≥0 be measurable
functions.

(p-sums) If f , g , h are such that h(x + y) ≥ Sp(f (x), g(y)), p 6= 0,
for all x , y ∈ Rn then∫

Rn

h(x) dx ≥ S p
np+1

(∫
Rn

f (x)dx ,

∫
Rn

g(x) dx

)
.

(p-means) If f , g , h satisfy h
(
(1− λ)x + λy

)
≥ Mp(f (x), g(y), λ)

for all x , y ∈ Rn then∫
Rn

h(x) dx ≥ M p
np+1

(∫
Rn

f (x) dx ,

∫
Rn

g(x) dx , λ

)
.

By applying this result to the functions f = χ
A
, g = χ

B
and h = χ

A+B

(respectively h = χ
(1−λ)A+λB

), and p = ∞, the above versions of the
Brunn-Minkowski inequality are recovered.
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Brunn-Minkowski type inequalities in the discrete setting

We consider either finite subsets A,B ⊂ Zn of integer points, and
our measure will be the cardinality,

or K , L ⊂ Rn bounded sets and our way of measuring will be the
lattice point enumerator.

Does any discrete Brunn-Minkowski inequality exist in the cla-
ssical form? Namely, is it true that

|A + B|1/n ≥ |A|1/n + |B|1/n ?

And what about

Gn

(
(1− λ)K + λL

)1/n ≥ (1− λ)Gn(K )1/n + λGn(L)1/n ?

NO!

For A = {0} and any B ⊂ Zn finite,

|B|1/n = |A + B|1/n < |A|1/n + |B|1/n = 1 + |B|1/n.

For K = {0} and L = [0,m]n, with m ∈ N odd, and λ = 1/2,

m + 1

2
= Gn

(
(1− λ)K + λL

)1/n
< (1− λ)Gn(K )1/n + λGn(L)1/n =

m + 2

2
.
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Some bounds for |A + B |

A linear discrete Brunn-Minkowski inequality

Let A,B ⊂ Rn be finite sets. Then

|A + B| ≥ |A|+ |B| − 1.

Ruzsa, 1994

If A,B ⊂ Rn are finite sets with |B| ≤ |A| and dim(A + B) = n, then

|A + B| ≥ |A|+ n|B| − n(n + 1)

2
,

and there is no improvement of it linear in |A|.
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A discrete Brunn-Minkowski inequality by Gardner-Gronchi

Gardner&Gronchi, 2001. A discrete analog of vol(K+ L) ≥ vol(BK + BL):

A discrete Brunn-Minkowski inequality

If A,B ⊂ Zn are finite sets with dim B = n, then

|A + B| ≥
∣∣DB

|A| + DB
|B|

∣∣.

DB
|A| = B-initial segment associated to A: for m ∈ N, DB

m is the set
of the first m points of Zn

xi≥0 in the “B-order”.
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m is the set
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|B| = 6
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A discrete Brunn-Minkowski inequality by Gardner-Gronchi

Gardner&Gronchi, 2001. A discrete analog of vol(K+ L) ≥ vol(BK + BL):

A discrete Brunn-Minkowski inequality

If A,B ⊂ Zn are finite sets with dim B = n, then

|A + B| ≥
∣∣DB

|A| + DB
|B|

∣∣.
DB
|A| = B-initial segment associated to A: for m ∈ N, DB

m is the set
of the first m points of Zn

xi≥0 in the “B-order”.

|B| = 6 and |A| = 15
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Extending one of the involved sets

Let A ⊂ Zn be finite, n ≥ 2. We construct recursively a new set Ā that
will allow us to get a new discrete Brunn-Minkowski inequality.

πi1,...,ik = orthogonal projection onto the k-dimensional coordinate
plane Rei1 + · · ·+ Reik .

For m ∈ Z, F ⊂ Zk , F (m) = “section of F at m orthogonal to Rek”:

F (m) =
{
p ∈ Zk−1 : (p,m) ∈ F

}
.

Let m0 ∈ πk(F ) be such that∣∣F (m0)
∣∣ = max

m

∣∣F (m)
∣∣.
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will allow us to get a new discrete Brunn-Minkowski inequality.

πi1,...,ik = orthogonal projection onto the k-dimensional coordinate
plane Rei1 + · · ·+ Reik .

For m ∈ Z, F ⊂ Zk , F (m) = “section of F at m orthogonal to Rek”:

F (m) =
{
p ∈ Zk−1 : (p,m) ∈ F

}
.

Let m0 ∈ πk(F ) be such that∣∣F (m0)
∣∣ = max

m

∣∣F (m)
∣∣.

J. Yepes Nicolás On discrete Borell-Brascamp-Lieb type inequalities



Extending one of the involved sets

Let A ⊂ Zn be finite, n ≥ 2. We construct recursively a new set Ā that
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Extending one of the involved sets

Defining the function σk : {F ⊂ Zk : F finite} −→ {F ⊂ Zk : F finite}
“add the maximum section”:

σk(F ) =

{
F ∪ {max F + 1} if k = 1,

F ∪
(
F (m0)×

{
max{πk(F )}+ 1

})
if k > 1.
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Extending one of the involved sets

First step: A1 = σn(A)

Second step: A2 =
⋃

m∈πn(A1)

(
σn−1

(
A1(m)

)
× {m}

)
.

k-th step: Ak =
⋃

m∈πn,...,n−k+2(Ak−1)

(
σn−k+1

(
Ak−1(m)

)
× {m}

)
.

We define Ā = An.

:

0

ρK(u)u

K
u
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A new discrete Brunn-Minkowski inequality

Theorem (Hernández Cifre, Iglesias, Y. N. (2018))

Let A,B be finite subsets of Zn, A,B 6= ∅. Then∣∣Ā + B
∣∣1/n ≥ |A|1/n + |B|1/n.

The inequality is sharp.

Lattice cubes

For m ∈ N, Cm = [0,m]n ∩ Zn. Equality holds if A = Cm1 ,B = Cm2 are
lattice cubes:

Ā = Cm1+1 =⇒ Ā + B = Cm1+m2+1.∣∣Ā + B
∣∣ = (m1 + m2 + 2)n

=
(
|A|1/n + |B|1/n

)n
.
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On a discrete BBL inequality

Regarding a discrete version of the Borell-Brascamp-Lieb inequality (for
p-sums) when dealing with finite sets we have:

Theorem (Iglesias, Y. N. (2019))

Let A,B ⊂ Zn be finite sets. Let −1/n ≤ p ≤ ∞, p 6= 0, and let
f , g , h : Rn −→ R≥0 be functions such that h(x + y) ≥ Sp(f (x), g(y))
for all x ∈ A, y ∈ B. Then

∑
z∈A+B

h(z) ≥ S p
np+1

 ∑
x∈rf (A)

f (x),
∑
y∈B

g(y)

 .

When f = g ≡ 1 and p = ∞, the above discrete Brunn-Minkowski
inequality is recovered.
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On discrete BM and BBL inequalities for Gn(·)
Theorem (Iglesias, Y. N., Zvavitch (2019+))

Let K , L ⊂ Rn be non-empty bounded sets and let λ ∈ (0, 1). Let
−1/n ≤ p ≤ ∞ and let f , g , h : Rn −→ R≥0 be functions such that
h((1− λ)x + λy) ≥ Mp(f (x), g(y), λ) for all x ∈ K , y ∈ L. Then∑

z∈M∩Zn

h∗(z) ≥ M p
np+1

 ∑
x∈K∩Zn

f (x),
∑

y∈L∩Zn

g(y), λ

 ,

where M = (1− λ)K + λL + (−1, 1)n.

Here, for φ : Rn −→ R≥0, φ∗ denotes the function φ∗ : Rn −→ R≥0

given by φ∗(z) = supu∈(−1,1)n φ(z + u) for all z ∈ Rn.

Theorem (Iglesias, Y. N., Zvavitch (2019+))

Let K , L ⊂ Rn be bounded sets with Gn(K )Gn(L) > 0 and let λ ∈ (0, 1).
Then

Gn

(
(1− λ)K + λL + (−1, 1)n

)1/n ≥ (1− λ)Gn(K )1/n + λGn(L)1/n.

The inequality is sharp.
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Continuous version vs Discrete version

Not possible to obtain any of the above discrete BM inequalities from the
classical ones by replacing the points by suitable compact sets.

As pointed out by Gardner and Gronchi:
it is worth remarking that the obvious idea of replacing the points in
the two finite sets by small congruent balls and applying the
classical Brunn-Minkowski inequality to the resulting compact sets
is doomed to failure. The fact that the sum of two congruent balls
is a ball of twice the radius introduces an extra factor of 1/2...

Theorem (Iglesias, Y. N. (2019))

The discrete Borell-Brascamp-Lieb inequality (for p-sums) implies the
corresponding classical Borell-Brascamp-Lieb inequality, provided that the
functions f , g are Riemann integrable.

Theorem (Iglesias, Y. N., Zvavitch (2019+))

The discrete Borell-Brascamp-Lieb inequality (for p-means) implies the
corresponding classical Borell-Brascamp-Lieb inequality, provided that the
functions f , g are Riemann integrable and h is upper semicontinuous.
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