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Volume product and the Mahler conjecture 3/15
For a convex body K in Rn, we denote its polar w.r.t. the origin o by K◦.
(K◦ := {Q ∈ Rn; P · Q ≤ 1 for any P ∈ K} .)

Volume product
Let K be a convex body in Rn and K◦ be its polar,

P(K) := |K||K◦| := voln(K) voln(K◦)

is the volume product of K.

Fact: P is invariant with respect to any linear transformation A ∈ GL(n).

Mahler’s conjecture [Mahler (1939)]
For any centrally symmetric (i.e. K = −K) convex body K in Rn,

P(K) = |K||K◦| ≥
4n

n!
.

Remark

I n = 1 case is trivial, n = 2 case was shown by Mahler himself.
I Sharp upper estimate of P(K) is already known as the Blacshke–Santaló inequality.
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[Mahler’s conjecture (1939)]
P(K) ≥ 4n/n! for any centrally symmetric convex body K ⊂ Rn.

[Saint-Raymond, Publ. Math. Univ. Pierre et Marie Curie (1980)]
K ⊂ Rn: a convex body , K is symmetric w.r.t. all coordinate plane (⇔ 1-unconditional).
Then P(K) ≥ 4n/n!.
(simple proof: [Meyer, Israel J. Math. (1986)])

[Reisner, Math. Scand. (1985)]
K ⊂ Rn: a zonoid ⇒ P(K) ≥ 4n/n!.

[Barthe and Fradelizi, Amer. J. Math. (2013)]
Sharp lower bounds of P(K) under another symmetry. (Details will be described later.)

[Artstein-Avidan, Karasev, and Ostrover, Duke Math. J. (2014)]
Viterbo’s conjecture (in the context of symplectic geometry) implies Mahler’s conjecture.

There are many other related resluts, however, the conjecture is still open.
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Theorem [Iriyeh and S. (preprint; arXiv:1706.01749v3)]
Let K be a centrally symmetric convex body in R3. Then,

P(K) ≥
43

3!
=

32
3

,

with equality if and only if either K or K◦ is a parallelepiped.

Remark

I The keys to prove the theorem are “equipartition” and “signed volume estimate”.
I A simplified proof for “equipartition” is given in [Fradelizi, Hubard, Meyer,

Roldán-Pensado, and Zvavitch, arXiv:1904.10765].

Motivation

I At present, we cannot solve high dimensional cases (n ≥ 4), however, “signed volume
estimate” is applicable. (Details will be described later.)

I To understand deeply about Mahler’s conjecture, we consider a generalized problem.
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Let G be a discrete subgroup of orthogonal group O(n) ⊂ Mn(R).
Kn(G) = {K ∈ Kn; gK = K for any g ∈ G}: the set of all G-invariant convex bodies.

Problem
Find a minimizer of minimizing problem

min
K∈Kn(G)

P(K).

Remark

I Case G = {E, −E}: Mahler’s conjecture. (G-invariant iff centrally symmetric)

I Case G =
{(±1 0. . .

0 ±1

)}
: Saint-Raymond’s result.

Today, we focus the case n = 3.
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Fact (see, e.g., [Conway–Smith, “On quaternions and Octonoins”] )
Up to conjugacy, discrete subgroups of O(3) are classified as 7 infinite families and 7
polyhedral groups. In Schönflies notation,

C`, S2`, C`h, C`v, D`, D`d, D`h (` ∈ N), T, Td, Th, O, Oh, I, Ih.

R` :=
(

cos ξ − sin ξ 0
sin ξ cos ξ 0

0 0 1

)
, V :=

(
1 0 0
0 −1 0
0 0 1

)
, H :=

(
1 0 0
0 1 0
0 0 −1

)(
` ∈ N, ξ :=

2π

`

)
.

C` := 〈R`〉 , C`h := 〈R`, H〉, C`v := 〈R`, V 〉 , S2` := 〈R2`H〉 ,

D` := 〈R`, V H〉 , D`d := 〈R2`H, V 〉 , D`h := 〈R`, V, H〉.

T := {g ∈ SO(3); g4 = 4} , Td := {g ∈ O(3); g4 = 4} , Th := {±g; g ∈ T } ,

O := {g ∈ SO(3); gP8 = P8} , Oh := {g ∈ O(3); gP8 = P8} = {±g; g ∈ O} ,

I := {g ∈ SO(3); gP20 = P20} , Ih := {g ∈ O(3); gP20 = P20} = {±g; g ∈ I} ,

4: a regular tetrahedron (simplex), P8: a regular octahedron, P20: a regular icosahedron.

Remark
K is C`h-invariant if and only if K is R`-symmetry and H-symmetry.
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For a set A ⊂ Rn, we denote the group of linear isometries of A by
O(A) := {g ∈ O(n); gA = A}.

Theorem. [Barthe and Fradelizi, Amer. J. Math. (2013)]

(i) Let P be a regular polytope in Rn. Then P(K) ≥ P(P ) holds for any O(P )-invariant
convex body K ⊂ Rn (n ≥ 2).

(ii) Let Pi be a regular polytopes or Euclidean balls in Rni with n1 + · · · + nk = n. Then
P(K) ≥ P(P1 × · · · × Pk) holds for any O(P1) × · · · × O(Pk)-invariant convex
body K ⊂ Rn (n ≥ 2).

Remark
In the paper, they obtained result for equality condision of (i), and they studied also many
hyperplane symmetric case.

Let ` ≥ 3 and P = [−1, 1]× regular `-gon Q. Hence, P is a right prism with regular `-gonal
base. Then O([−1, 1]) × O(Q) is D`h = 〈R`, V, H〉. By the theorem, P(K) ≥ P(P )
for any D`h-invariant convex body K ∈R3.

Theorem [Iriyeh-S. in preparation]
P(K) ≥ P(P ) for any C`h-invariant convex body K ∈R3.
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Known results
G minimizer P
D2h cube, P8 [Saint-Raymond (1980)]
S2 cube, P8 [Iriyeh-Shibata] (Mahler’s conjecture)
Td simplex [Barthe-Fradelizi (2013)]
Oh cube, P8 [Barthe-Fradelizi (2013)]
Ih P12, P20 [Barthe-Fradelizi (2013)]
D`h (` ≥ 3) regular `-prism, regular `-bipyramid [Barthe-Fradelizi (2013)]

Main Theorem [Iriyeh-S, in preparation]
P(K) ≥ P(P ) holds for G-invariant convex body K.

G minimizer P
C2h, Th, S6, D3d cube, P8
C`h, D` (` ≥ 3) regular `-prism, regular `-bipyramid

G minimizer P
T simplex
O cube, P8
I P12, P20

Remaining cases and conjecture
G minimizer P
{id.}, C1v, C2, C2v simplex
C`, C`v (` ≥ 3) regular `-pyramid
S2`, D`d (` = 2, ` ≥ 4) regular `-antiprism, its polar
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In [Iriyeh-S.], we introduced “signed volume estimate”.

Key lemma (signed volume estimate)
Assume that
I K ⊂ R3 is a convex body, K◦ is the polar of K.
I S ⊂ ∂K with piecewise C1 boundary C = ∂S.
I S◦ ⊂ ∂K◦ with piecewise C1 boundary C◦ = ∂S◦.

Then

|o ∗ S|3 |o ∗ S◦|3 ≥
1
32 C · C◦.

Here o ∗ S := {λx; x ∈ S, 0 ≤ λ ≤ 1} is the truncated cone over S, and C is a vector

valued line integral C :=
1
2

∫
C

r × dr, where r is a parametrization of C. o ∗ S◦ and C◦

are determined similarly.

Remark
If C is a curve (not necessary closed) on a plane H with o ∈ H, then C is a normal vector of
H and |C| = |o ∗ C|2.

S

o ∗ S

o
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Using smooth approximation, we can assume K is a smooth strongly convex body. Put
Λ(x) := ∇µK(x), where µK is the Minkowski gauge. Then Λ : ∂K → ∂K◦: smooth
diffeomorphism. Moreover, x · Λ(x) = 1 for any x ∈ ∂K.

|o ∗ S|3 =
∫

o∗S

dx =
1
3

∫
∂(o∗S)

x · n(x) dS(x) (the divergence theorem, div x = 3)

=
1
3

∫
S

x · n(x) dS(x) (x · n(x) = 0 on ∂(o ∗ S) \ S)

=
1
3

∫
S

1
|Λ(x)|

dS(x) (n(x) = Λ(x)/|Λ(x)|)

where n(x) is the unit normal vector at x. Thus, we have

32|o ∗ S|3 |o ∗ S◦|3 =
∫

S

1
|Λ(x)|

dS(x)
∫

S◦

1
|Λ−1(x◦)|

dS(x◦)

≥
∫

S

Λ(x)
|Λ(x)|

dS(x) ·
∫

S◦

Λ−1(x◦)
|Λ−1(x◦)|

dS(x◦)

(Λ(x) ∈ K◦, Λ−1(x◦) ∈ K, Λ(x) · Λ−1(x◦) ≤ 1)

=
∫

S

n(x) dS(x) ·
∫

S◦
n(x◦) dS(x◦) =

1
4

∫
∂S

r × dr ·
∫

∂S◦
r◦ × dr◦.

(the Stokes theorem)
�
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Using smooth approximation, we can assume K is a G-invariant smooth strongly convex body.
We use same Λ in the proof of Key Lemma.
(Put Λ(x) := ∇µK(x), where µK is the Minkowski gauge. Then Λ : ∂K → ∂K◦:
smooth diffeomorphism. Moreover, x · Λ(x) = 1 for any x ∈ ∂K.)
We denote by cone(A1, . . . , Ak) the polyhedral cone generated by A1, . . . , Ak.
(cone(A1, . . . , Ak) := {λ1A1 + · · · + λkAk; λ1, . . . , λk ≥ 0}.)

Up to linear transformation, we can assume

P :=
(0

0
1

)
, A :=

(1
0
0

)
, B :=

(cos 2π/`
sin 2π/`

0

)
∈ ∂K

K̂ := K ∩ cone(P, A, B), S := ∂K ∩ cone(P, A, B),

S◦ := Λ(S) ⊂ ∂K◦, K̂◦ := o ∗ S◦.

C(P, A) := conv(P, A) ∩ ∂K: a curve on ∂K, from P to A.
C(A, B) := conv(A, B) ∩ ∂K: a curve on ∂K, from A to B.
C(B, P ) := conv(B, P ) ∩ ∂K: a curve on ∂K, from B to P .
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Since K and K◦ are C`h-invaritant, using Key Lemma, we have

|K| |K◦| = 4`2|K̂| |K̂◦|

≥
4`2

9

(
C(P, A) + C(A, B) + C(B, P )

)
·
(

Λ(C(P, A)) + Λ(C(A, B)) + Λ(C(B, P ))
)

.

We note that, in general, Λ(C(P, A)) may not be on the zx-plane, however, our signed
volume estimate can apply.
Since K and K◦ are R`, H-symmetry, we get

C(B, P ) = −R`C(P, A), Λ(C(B, P )) = −R`Λ(C(P, A)), Λ(C(A, B)) ‖ C(A, B)

Thus, by direct calculation, we see

|K| |K◦| ≥
4`2

9

(
2
(

1 − cos
2π

`

)
C(P, A) · Λ(C(P, A)) + C(A, B) · Λ(C(A, B))

)
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Let H be zx-plane an projH be the projection to H. Then, we can obtain that,

C(P, A) · Λ(C(P, A)) = |o ∗ C(P, A)|2 |o ∗ projH(Λ(C(P, A)))|2.

Let L be K ∩ H and L◦ be the (two-dimensional) polar of L. Then, by C`h symmetry and
the definition of Λ, we can check that
o ∗ C(P, A) = L ∩ cone(A, B), o ∗ proj(o ∗ Λ(C(P, A))) = L◦ ∩ cone(A, B).

Lemma (see, e.g. [Böröczky, Makai Jr, Meyer, and Reisner (2013)], [Barthe and Fradelizi
(2013)], or using signed volume estimate again)

|L ∩ cone(A1, A2)| |L◦ ∩ cone(B1, B2)| ≥
1
4

(A2 − A1) · (B2 − B1).

Thus, we get |L ∩ pos(P, A)|2 |L◦ ∩ pos(P, A)|2 ≥ (P − A) · (P − A)/4 = 1/2.
Similarly we get C(A, B) · Λ(C(A, B)) ≥ (1 − cos 2π/`) /2. Consequently, we obtain the
desired inequality P(K) ≥ (2`2)(1 − cos 2π/`)/3, which is the volume product of a regular
`-prism. �
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Remark

I We can prove other cases G = D`, T, O, I similarly.
I Using our previous result, we can treat the cases C2h, Th, S6, D3d. (In this cases, cube

is a minimizer.)
I In our main theorem, we can give equality conditions also.
I Our methods can be applied to high dimensional cases n ≥ 4 for example,

Theorem [Iriyeh-S, work in progress]
Assume n ≥ 4. Let P be a simplex or cube in Rn. Put G := {g ∈ SO(n); gP = P }.
Then P(K) ≥ P(P ) holds for G-invariant convex body K ⊂ Rn.


