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Theorem (Lata la, N., 2019)

Let X be a random vector in Rn and ∅ 6= T ⊆ Rn. Then for p ≥ 2(
E sup

t∈T
|〈t,X 〉|p

)1/p

≤ 2
√
e

√
n + p

p
sup
t∈T

(E|〈t,X 〉|p)1/p .

Remark. This result is optimal (up to a universal constant) and
equality is achieved for any rotationally invariant random vector X
and T = Bn

2 .

Proof inspired by the Welch bound proof of Datta, Stephen and
Douglas (2012).
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Application I - p-summing constant.

Theorem (Lata la, N., 2019)
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The best constant πp(F ) in this inequality is called the p-summing

constant of F . We have πp(ln2 ) = (E|U1|p)−1/p ≈
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πp(F ) ≤ cπp(ldimF
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Question. Is it true that πp(F ) ≤ πp(ldimF
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Application I - p-summing constant.

Corollary (Lata la, N., 2019)
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Application II - concentration of measure theory.

Theorem (Lata la, N., 2019 )

Every centered log-concave probability measure on Rn satisfies the
optimal concentration inequality in the sense of Lata la and
Wojtaszczyk with a constant ∼ n5/12.

Remark. Previous best bound ∼ n1/2 was due to Lata la.
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Basic linear algebra facts.

Lemma 1 (rank factorization)

Suppose A is a k × l matrix of rank at most n. Then A can be
written as a product A = TX , where T is k × n and X is n × l :

A = TX =

 t1
...
tk


︸ ︷︷ ︸

n

·

 x1 · · · xl
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Lemma 3 (case p = 2)

Let X be a random vector in Rn and let us take ∅ 6= T ⊆ Rn. Then

E sup
t∈T
|〈t,X 〉|2 ≤ n sup

t∈T
E|〈t,X 〉|2.

Let C be the covariance matrix of a symmetric, bounded and
non-degenerate X . We can assume supt∈T E|〈t,X 〉|2 = 1 and

T = {t ∈ Rn : E|〈t,X 〉|2 ≤ 1} = {t ∈ Rn : 〈Ct, t〉 ≤ 1}
= {t ∈ Rn : |C 1/2t| ≤ 1}.

Then we have

E sup
t∈T
|〈t,X 〉|2 = E sup

|C1/2t|≤1
|〈t,X 〉|2 = E sup

|C1/2t|≤1
|〈C 1/2t,C−1/2X 〉|2

= E|C−1/2X |2 = n.
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Proposition (case p = 2m)

Let X be a random vector in Rn and let us take T ⊆ Rn. Suppose
m is a positive integer. Then

E sup
t∈T
|〈t,X 〉|2m ≤

(
n + m − 1

m

)
sup
t∈T

E|〈t,X 〉|2m.

Proof. Enough: for any k, l ≥ 1 and any vectors t1, . . . , tk and
x1, . . . , xl in Rn

l∑
j=1

sup
1≤i≤k

|〈ti , xj〉|2m ≤
(
n + m − 1

m

)
sup

1≤i≤k

l∑
j=1

|〈ti , xj〉|2m.

From Lemma 2 the matrix A◦m = (〈ti , xj〉m) has rank at most
N :=

(n+m−1
m

)
. From Lemma 1 there exist vectors t̃1, . . . , t̃k and

x̃1, . . . , x̃l in RN such that 〈ti , xj〉m = 〈t̃i , x̃j〉. But from Lemma 3

l∑
j=1

sup
1≤i≤k

|〈t̃i , x̃j〉|2 ≤ N sup
1≤i≤k

l∑
j=1

|〈t̃i , x̃j〉|2.
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Cn,q ≤ Cn,p if p < q.

Let pj = supi≤k |〈ti , xj〉|q−p and assume
∑l

j=1 pj = 1. Let X be a
random vector such that P(X = xj) = pj .

Then

l∑
j=1

sup
1≤i≤k

|〈ti , xj〉|q = E sup
1≤i≤k

|〈ti ,X 〉|p ≤ Cp
n,p sup

1≤i≤k
E|〈ti ,X 〉|p

= Cp
n,p sup

1≤i≤k

l∑
j=1

|〈ti , xj〉|ppj

≤ Cp
n,p sup

1≤i≤k

 l∑
j=1

|〈ti , xj〉|q
p/q l∑

j=1

p
q/(q−p)
j

(q−p)/q

= Cp
n,p sup

1≤i≤k

 l∑
j=1

|〈ti , xj〉|q
p/q l∑

j=1

sup
1≤i≤k

|〈ti , xj〉|q
(q−p)/q

.

After rearranging we get Cn,q ≤ Cn,p.
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Thank you!


