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1/p
(Esweliex0r) " < 2ve
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Remark. This result is optimal (up to a universal constant) and
equality is achieved for any rotationally invariant random vector X
and T = Bj.

Proof inspired by the Welch bound proof of Datta, Stephen and
Douglas (2012).
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Theorem (Latata, N., 2019) (strong vs. weak moments)

Let X be a random vector in (R”,]| - ||). Then for p > 2

(E[X[P)P < 2v/e ,/ sup (E|(t, X)|P)*/7.
llt]]«<1
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Corollary (Latata, N., 2019)
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Corollary (Latata, N., 2019)

Let (F,|| - ||) be a Banach space of dimension n. Then for any
vectors xi,...,x; € F we have
/ 1/p / 1/p
n+p
Yol ] < 2ve [—= sup | D I(ex)
= Poe<a \ i

The best constant m,(F) in this inequality is called the p-summing
constant of F. We have (1) = (E|Us]P) VP ~ /222,

Therefore .
mp(F) < cmp(5™F).

Question. Is it true that 7p(F) < wp(lgim Fy?
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Remark. Previous best bound ~ n/2 was due to Latata.
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Basic linear algebra facts.

Lemma 2 (rank of Hadamard product), Peng-Waldron, 2002

Suppose A = (ajj) is a k x | matrix of rank at most n. Let m be a

positive integer. Then A°™ := (af") has rank at most ("er*l).
Proof. There exist vectors v(!), ..., v(" such that every column
a=(ay,...,ax) of A can be written as
n n
a= Z v\, that is aj = Z v,.(s)/\s.
s=1 s=1
n
aj" = Z vi(sl)vi(s2) Ce vl-(s’"))\sl)\s2 TR Vi

51,52,..,Sm=1

We conclude that

i i

am ¢ span{(v(sl) e V~(sm))i:1,...,k7 1<s5<...<sp < n}'
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Esup|(t, X)[2 < n supEl(t, X)[%.
teT teT

Let C be the covariance matrix of a symmetric, bounded and
non-degenerate X. We can assume sup,. 1 E|(t, X)|?> = 1 and

T={teR": E|(t,X)]? <1} ={teR": (Ct,t) <1}
={teR": |CY?t] <1}.
Then we have

Esup|(t,X)?=E sup [(t,X)P=E sup [(C'2t,CTV2X)?
teT |C1/2t<1 |C1/2¢|<1

= E|C7Y2X|? = n,
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Let X be a random vector in R” and let us take T C R". Suppose
m is a positive integer. Then
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Proof. Enough: for any k,/ > 1 and any vectors ty, ..., tx and
X1,...,x In R"
/ n+m-—
2 )2
sup [(6) 7 < (") sup Z| (17,5027,
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From Lemma 2 the matrix A°™ = ((t;, x;)™) has rank at most
N := (”*gfl) From Lemma 1 there exist vectors fi,. .., fx and
Xi,...,% in RN such that (t;,x;)™ = (£, %;). But from Lemma 3

/

> sup [(H %)[> <N sup ZI

o 1sisk 1<i<k;
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i
> sup [(tix)|9 =E sup |(t;, X)[P < Ch, sup E[(t;,X)[P

= 1<izk 1<i<k 1<i<k
I
=CP, sup > [{ti, x)|Ppj
1<i<k <~
Rt j—l
| pla s, (g—p)/q
< CP, sup Z\(t,-,xj'ﬂq ZP}J/(q_p)
1<i<k \ =4 1
J J
| pla s (a—p)/a
= C}p sup (i, ;)| > sup [(ti, x|
1<i<k \ i3 (o <isk

After rearranging we get C, 4 < Cjp.



Thank youl!



