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Introduction

Keith Ball showed that the hyperplane section of the unit n-cube Bn
∞

perpendicular to amax := 1√
2
(1, 1, 0, . . . , 0) has maximal

(n − 1)-dimensional volume among all hyperplane sections, i.e. for any
a ∈ Sn−1 ⊂ Rn

voln−1(Bn
∞ ∩ a⊥) ≤ voln−1(Bn

∞ ∩ a⊥max) =
√
2,

where a⊥ is the central hyperplane orthogonal to a. Oleszkiewicz and
Pełczyński proved a complex analogue of this result, with the same
hyperplane a⊥max .

Pełczyński asked whether the same hyperplane section is also maximal for
intersections with the boundary of the n-cube, i.e. whether for all
a ∈ Sn−1 ⊂ Rn

voln−2(∂Bn
∞ ∩ a⊥) ≤ voln−2(∂Bn

∞ ∩ a⊥max) = 2((n − 2)
√
2+ 1).

He proved it for n = 3 when vol1(∂B3
∞ ∩ a⊥) is the perimeter of the

quadrangle or hexagon of intersection.
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Introduction

Abbildung: Cubic sections
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Introduction

Notation.

Let K ∈ {R,C}, α = 1
2 for K = R and α = 1√

π
for K = C.

Let || · ||∞ and | · | be the maximum and the Euclidean norm on Kn and

Bn
∞ := {x ∈ Kn | ||x ||∞ ≤ α}

be the n-cube of volume 1 in Kn. For K = C, identify Ck = R2k for
volume calculations. For a ∈ Kn with |a| = 1 and t ∈ K, the parallel
section function A is defined by

An−1(a, t) := voll(n−1)(B
n
∞ ∩ (a⊥ + αta)),

with l = 1 if K = R and l = 2 if K = C. Put An−1(a) = An−1(a, 0).

By
Ball and Oleszkiewicz-Pełczyński, we have for all a ∈ Kn with |a| = 1

An−1(a) ≤ An−1(amax) = (
√
2)l .

For a ∈ Kn with |a| = 1, define the perimeter of the cubic section by a⊥ as

Pn−2(a) := voll(n−2)(∂B
n
∞ ∩ a⊥), l as before.
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The main result

The answer to Pełczyński’s problem for

Pn−2(a) := voll(n−2)(∂B
n
∞ ∩ a⊥)

is affirmative. This is a joint result with A. Koldobsky:

Theorem 1

Let n ≥ 3 and amax := 1√
2
(1, 1, 0, · · · , 0) ∈ Kn. Then for any a ∈ Kn with

|a| = 1 we have
Pn−2(a) ≤ Pn−2(amax), (1)

We have

Pn−2(amax) = 2((n − 2)
√
2+ 1) , K = R

and
Pn−2(amax) = 2π((n − 2)2+ 1) , K = C.
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An application of the Busemann-Petty type

As a consequence of Theorem 1 we find a counterexample to a surface area
version of the Busemann-Petty for large dimensions (König, Koldobsky):

Theorem 2
For each n ≥ 14, there exist origin-symmetric convex bodies K , L in Rn

such that for all a ∈ Sn−1

voln−2(∂K ∩ a⊥) ≤ voln−2(∂L ∩ a⊥)

but
voln−1(∂K ) > voln−1(∂L).

Example. Let K = Bn
∞ be the unit cube in Rn. Let L be the Euclidean ball

of radius r in Rn so that the perimeters of hyperplane sections of L are all
equal to the maximal perimeter of sections of K .
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An application of the Busemann-Petty type

Let K = Bn
∞ be the unit cube in Rn. Let L be the Euclidean ball of radius r in Rn so that

voln−2(∂K ∩ a⊥) ≤ voln−2(∂K ∩ a⊥max) = 2((n − 2)
√
2 + 1)

= voln−2(rSn−2) = rn−2 2π(n−1)/2

Γ( n−1
2 )

,

r =
[((n − 2)

√
2 + 1)Γ( n−1

2 )]
1

n−2

π(n−1)/(2(n−2)) .

The opposite inequality for the surface areas of K and L happens when

voln−1(∂Bn
∞) = 2n > voln−1(rSn−1) = rn−1 2πn/2

Γ( n
2 )

,

1 >
πn/2

nΓ( n
2 )

rn−1 =
1

nΓ( n
2 )

[((n − 2)
√
2 + 1)Γ( n−1

2 )]
n−1
n−2

π1/(2(n−2)) =: BP(n) .

Then BP is decreasing in n, with BP(x0) = 1 for x0 ' 13.70, so BP(n) < 1 for all
n ≥ 14.

In the complex case, a similar counterexamples exists for all n ≥ 11.
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Perimeter formulas and idea of the proof of Theorem 1

For a ∈ Kn with |a| = 1 let a? denote the non-increasing rearrangement of the sequence
(|ak |)n

k=1. Then

An−1(a, t) = An−1(a?, |t|) , Pn−2(a) = Pn−2(a?).

Thus assume that a = (ak)n
k=1 satisfies a1 ≥ · · · ≥ an ≥ 0, |a| = 1 and t ≥ 0.

Then

Proposition 1

An−1(a, t) =
2
π

∞∫
0

n∏
k=1

sin(aks)

aks
cos(ts) ds , K = R, (2)

An−1(a, t) =
1
2

∞∫
0

n∏
k=1

j1(aks) J0(ts) s ds , K = C, (3)

where j1(t) = 2 J1(t)
t and Jν denote the Bessel functions of index ν. If ak = 0, sin(ak s)

ak s

and j1(aks) have to be read as 1 in formulas (2) and (3).

Formula (2) is due to Pólya 1913 and was used by Ball in his proof. Both formulas can
be shown by taking the Fourier transform of An−1(a, ·), using Fubini’s theorem and
taking the inverse Fourier transform. The sin t

t and j1(t) functions occur as Fourier
transforms of the interval in R and the disc in C = R2, respectively.
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Perimeter formulas and idea of the proof of Theorem 1

To prove Theorem 1, we use the following formulas for the perimeter.

Proposition 2

For any a = (ak)n
k=1 ∈ Sn−1 ⊂ Rn

Pn−2(a) = 2
n∑

k=1

√
1− a2

k
2
π

∫ ∞
0

n∏
j=1,j 6=k

sin(aj s)

aj s
cos(aks) ds , K = R, (4)

Pn−2(a) = 2π
n∑

k=1

(1− a2
k)

1
2

∫ ∞
0

n∏
j=1,j 6=k

j1(aj s) J0(aks) s ds , K = C. (5)

In Ball’s result, the integral in (2) for t = 0 is estimated by using Hölder’s inequality if
a1 ≤ 1√

2
, which is natural since in the extremal case (a1 = a2 = 1√

2
, aj = 0, j > 3) the

integrand is non-negative. In (4) and (5) we have weighted sums of integrals where the
integrands are non-positive in the extremal case. Estimating Pn−2(a) requires further
methods in addition to those of Ball. The idea is to consider the perimeter estimate as a
constrained optimization problem, using Proposition 3 below.
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Perimeter formulas and idea of the proof of Theorem 1

Proof of (4). Let K = R, a = (ak)n
k=1 ∈ Sn−1, a1 ≥ · · · an ≥ 0, x ∈ Kn, a = (a1, ã),

x = (x1, x̃). The hyperplane a⊥ intersects the boundary ∂Bn
∞ in 2n (typically

non-central) (n − 2)-dimensional sections of an (n − 1)-cube, namely for xj = ± 1
2 ,

j = 1, · · · , n.

Take x1 = − 1
2 , put a′j :=

aj√
1−a2

1
, j = 1, · · · , n, ã′ := (a′j )

n
j=2. Then |ã′|2 = 1. By (2)

voln−2{ x̃ ∈ Rn−1 | 〈x̃ , ã〉 = −x1a1 =
1
2
a1 } = An−2(ã′, a′1)

=
2
π

∫ ∞
0

n∏
j=2

sin(a′j r)

a′j r
cos(a′1r)dr =

√
1− a2

1
2
π

∫ ∞
0

n∏
j=2

sin(aj s)

aj s
cos(a1s)ds .

The same holds for x1 = + 1
2 and similarly for xj = ± 1

2 , so that

Pn−2(a) = 2
n∑

k=1

√
1− a2

k
2
π

∫ ∞
0

n∏
j=1,j 6=k

sin(aj s)

aj s
cos(aks) ds ,

which proves (4).
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1
2
a1 } = An−2(ã′, a′1)
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Perimeter formulas and idea of the proof of Theorem 1

For any a = (ak)n
k=1 ∈ Sn−1 ⊂ Rn and k ∈ {1, · · · , n}, define

Dk(a) :=

{
2
π

∫∞
0

∏n
j=1,j 6=k

sin(aj s)
aj s

cos(aks) ds , K = R
1
2

∫∞
0

∏n
j=1,j 6=k j1(aj s) J0(aks) s ds , K = C

}

so that by (4) and (5)

Pn−2(a) = 2πl−1
n∑

k=1

(1− a2
k)l/2 Dk(a). (6)

Proposition 3

We have
n∑

k=1

Dk(a) = (n − 1) An−1(a). (7)

and for all k ∈ {1, · · · , n}
Dk(a) ≤ An−1(a).
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Perimeter formulas and idea of the proof of Theorem 1

Let P(1) be the (n − 1)-dimensional pyramid with vertex 0, height h = 1
2

1√
1−a2

1
and

base being the (n − 2)-dimensional section with area An−2(ã′, a′1). Then

voln−1(P(1)) =
1

n − 1
1
2

1√
1− a2

1

An−2(ã′, a′1) =
1

2(n − 1)
D1(a) .

Abbildung: Section as union of simplices
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Perimeter formulas and idea of the proof of Theorem 1

Graphic illustration for Dk(a) ≤ An−1(a).

Abbildung: Scaling up one dimension
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Pełczyński’s case

In Pełczyński’s case K = R, n = 3, formula (4) gives explicitly

1
2
P1(a) =

{
1
a1

(
√

1− a2
2 +

√
1− a2

3) , a1 ≥ a2 + a3√
1− a2

1
a2+a3−a1

2a2a3
+
√

1− a2
2

a1+a3−a2
2a1a3

+
√

1− a2
3

a1+a2−a3
2a1a2

, a1 < a2 + a3

}
.

This may be used to directly prove that

P1(a) ≤ 2(
√
2 + 1) = P1(amax).
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Sketch of the proof of Theorem 1 Constrained optimization

Proof of Theorem 1. In the real case K = R, we have

D1(amax) = D2(amax) =
2
π

∫ ∞
0

sin( s√
2

)
s√
2

cos(
s√
2

) ds =
1√
2
2
π

∫ ∞
0

sin(t)

t
dt =

1√
2
,

Dj (amax) =
2
π

∫ ∞
0

(
sin( s√

2
)

s√
2

)2

ds =
√
2
2
π

∫ ∞
0

(
sin(t)

t

)2

dt =
√
2 , j > 2.

Hence by (6)
Pn−2(amax) = 2((n − 2)

√
2 + 1).

Now let a = (ak)n
k=1 ∈ Sn−1 be arbitrary with a1 ≥ · · · ≥ an ≥ 0. By (6), we get using

Proposition 3

1
2
Pn−2(a) ≤ sup{

n∑
k=1

√
1− a2

k Ck | 0 ≤ Ck ≤ An−1(a),
n∑

k=1

Ck = (n − 1) An−1(a)}.

Since (
√

1− a2
k )n

k=1 is increasing in k, the supremum is attained for increasing Ck and,
in fact, for C1 = 0, C2 = · · · = Ck = An−1(a) so that

1
2
Pn−2(a) ≤

n∑
k=2

√
1− a2

k An−1(a).
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Sketch of the proof of Theorem 1 Constrained optimization

1
2
Pn−2(a) ≤

n∑
k=2

√
1− a2

k An−1(a). (8)

Since φ(x) =
√
1− x is concave,

1
n − 1

n∑
k=2

φ(a2
k) ≤ φ(

1
n − 1

n∑
k=2

a2
k) = φ(

1
n − 1

(1− a2
1)),

1
2
Pn−2(a) ≤ (n − 1)

√
1− 1− a2

1

n − 1
An−1(a) ≤ (n − 1− 1− a2

1

2
) An−1(a).

If a1 ≤ 1√
2
, we use that, by Ball’s result, An−1(a) ≤

√
2 to get

1
2
Pn−2(a) ≤ (n − 3

2
+

a2
1

2
)
√
2 ≤ (n − 2)

√
2 +

3
4

√
2.

If a1 >
1√
2
, we use that An−1(a) ≤ 1

a1
and find

1
2
Pn−2(a) ≤ (n − 3

2
+

a2
1

2
)
1
a1
≤ (n − 2)

√
2 +

3
4

√
2.

However, 3
4

√
2 ' 1.0607 > 1, so that this does not prove Pn−2(a) ≤ Pn−2(amax) for all

a ∈ Sn−1. However, if a1 satisfies a1 /∈ (
√√

2− 1, 1√√
2+ 1

2
) ' (0.643, 0.723), the above

estimate yields Pn−2(a) ≤ Pn−2(amax). The difficulty is that in (6) the extremals for the
sum of weights and for the section function A occur for different sequences a.
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Sketch of the proof of Theorem 1 Constrained optimization

In the complex case, the optimization techniques works for all a. By (6)

1
2π

Pn−2(a) =
n∑

k=1

(1− a2
k) Dk(a),

and using Proposition 3, we have

1
2π

Pn−2(a) ≤ sup{
n∑

k=1

(1− a2
k) Ck | 0 ≤ Ck ≤ An−1(a),

n∑
k=1

Ck = (n − 1) An−1(a)}.

Since (1− a2
k)n

k=1 is increasing in k, the sum
∑n

k=1(1− a2
k) Ck will be maximal for the

increasing sequence C1 = 0, C2 = · · · = Cn = An−1(a). Therefore

1
2π

Pn−2(a) ≤
n∑

k=2

(1− a2
k) An−1(a) = (n − 2 + a2

1) An−1(a).

If a1 ≤ 1√
2
, we use An−1(a) ≤ An−1(amax) = 2, so that

1
2π

Pn−2(a) ≤ (n − 3
2

) 2 =
1
2π

Pn−2(amax).

If a1 >
1√
2
, we use that An−1(a) ≤ 1

a2
1
, so that

1
2π

Pn−2(a) ≤ (n − 2 + a2
1)

1
a2
1

=
n − 2
a2
1

+ 1 ≤ (n − 2) 2 + 1 =
1
2π

Pn−2(amax).

This proves Theorem 1 in the case of complex scalars.
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Sketch of the proof of Theorem 1 Keith Ball’s function

In the remaining case of real scalars when a1 ∈ (0.643, 0.723) we have to improve the
general estimate (8)

1
2
Pn−2(a) ≤

n∑
k=2

√
1− a2

k An−1(a)

by strengthening Ball’s estimate An−1(a) ≤ min(
√
2, 1

a1
) for a1 close to

√
2.

Ball’s estimate for An−1(a) relies on the non-trivial estimate f (p) ≤ f (2) = 1 for the
function

f (p) :=

√
p
2

2
π

∫ ∞
0

∣∣∣∣ sin(t)

t

∣∣∣∣p dt ,

since then for all 0 < an ≤ · · · ≤ a1 ≤ 1√
2
with

∑n
k=1 a2

k = 1 we get by using Hölder’s
inequality with pk := a−2

k ≥ 2

An−1(a) ≤
n∏

k=1

(
2
π

∫ ∞
0

∣∣∣∣ sin(aks)

aks

∣∣∣∣a−2
k

ds)a2
k

= (
n∏

k=1

f (a−2
k ))a2

k
√
2 ≤
√
2.

However, for p > 2, f (p) < f (2) = 1. More precisely:
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Sketch of the proof of Theorem 1 Keith Ball’s function

Proposition 4

Define f : (1,∞)→ R+ by

f (p) :=
√

p
2

2
π

∫ ∞
0

∣∣∣∣sin(t)t

∣∣∣∣p dt.

Then
(a) limp→∞ f (p) =

√
3
π and for all p ≥ 9

4 , f (p) ≤
√

3
π .

(b) f (
√
2+ 1

2) <
51
50 .

(c) f |[√2+ 1
2 ,

9
4 ]

is decreasing and convex.

Using the convexity of f |[√2+ 1
2 ,

9
4 ]

and the estimates for f (p) for

p =
√
2+ 1/2 ' 1.914 and p = 9

4 = 2.25, we strengthen the general
estimate (8) for sequences with a1 close to 1√

2
in order to prove Theorem 1

in these cases. This works since
√

3
π = limp→∞ f (p) < f (2) = 1, i.e. f has

strictly smaller values near ∞ than at 2.
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Sketch of the proof of Theorem 1 Keith Ball’s function

Abbildung: Ball’s function
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Sketch of the proof of Theorem 1 Keith Ball’s function

One finds e.g. in the case 2
3 ≤ a2 ≤ a1 ≤ 1√

2
, 2 ≤ a−2

1 ≤ a−2
2 ≤ 9

4 by using Hölder’s
inequality, the general arithmetic-geometric mean inequality and the definition of f that

An−1(a) ≤ [ (1− a2
1 − a2

2)

√
3
π

+ a2
2f (a−2

2 ) + a2
1f (a−2

1 ) ]
√
2.

Using the convexity of f to interpolate between the values f (2) = 1 and f ( 9
4 ) <

√
3/π,

one concludes for k = 1, 2

a2
k f (a−2

k ) ≤ a2
k(λk f (2) + (1− λk)f (

9
4

)) ≤ (9a2
k − 4) + (4− 8a2

k)

√
3
π
,

which strengthens the estimate for An−1(a). Again using

Pn−2(a) ≤ 2
n∑

k=2

√
1− a2

k An−1(a) ,

but now with a better estimate for An−1(a), we may prove Theorem 1 in this case.

The proof of Proposition 4 is technically involved, as already Ball’s estimate
f (p) ≤ f (2) = 1 for p ≥ 2.
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Sketch of the proof of Theorem 1 Keith Ball’s function

The complex analogue of Ball’s function is

g(p) :=
p
2
1
2

∫ ∞
0
|j1(t)|p t dt .

Again
g(2) = 1, g(p) ≤ g(2) for all p ≥ 2 .

But now
lim

p→∞
g(p) = g(2) = 1 ,

so no improvement of the constrained optimization technique would be
possible by improving Ball’s function estimate. However, it is not necessary
in the complex case, as we have seen.
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Sketch of the proof of Theorem 1 Keith Ball’s function

Abbildung: Complex analogue of Ball’s function
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