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The isoperimetric inequality for a convex body K € K2 states that

A(K) < 417 L(K)?

with equality iff K is a Euclidean 2-ball.
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The isoperimetric inequality for a convex body K € K2 states that

A(K) < 417 L(K)?

with equality iff K is a Euclidean 2-ball.
Since for K, M € K2,
AK+ M) =A(K)+2 A(K,M) + A(M)
and
LK + M)? = L(K)? + 2 L(K)L(M) + L(M)?,
it is tempting to ask:
1

A(K, M) < cL(K)L(M)  with  c= 7



Choose K = [0, e1] and M = [0, e2]. Then
AK, M) = %(A(K + M) — A(K) — A(M))

and

Hence, necessarily

This is in fact best possible.



Theorem (Betke, Weil ’91)

IfK,M € K?, then
1
A(K,M) < 8 L(K) L(M)

with equality iff K and M are (possibly degenerate) orthogonal segments.



Theorem (Betke, Weil ’91)

IfK,M € K?, then
1
A(K,M) < 8 L(K) L(M)

with equality iff K and M are (possibly degenerate) orthogonal segments.

Proof. Use Choquet representation of convex sets (integral version of the
Krein-Milman theorem). Characterization of the equality case is more
subtle.



Modified proof of the inequality. If K = P is a polygon, then
P= A+ .-+ Ay with (possibly degenerate) triangles A;.



Modified proof of the inequality. If K = P is a polygon, then
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Modified proof of the inequality. If K = P is a polygon, then
P= A+ .-+ Ay with (possibly degenerate) triangles A;.

e By approximation it suffices to show

AP, M) < %L(P) L(M)

o By linearity, it is sufficient to consider P = A.



Modified proof of the inequality. If K = P is a polygon, then
P= A+ .-+ Ay with (possibly degenerate) triangles A;.

e By approximation it suffices to show
1
A(P,M) < 8 L(P) L(M)

e By linearity, it is sufficient to consider P = A.
e By homog. and transl. inv., we can assume that B2 = B,(A).

AL, M) = 1/ h(A, u) S(M, du) <
S1

5 1 L(M).
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Modified proof of the inequality. If K = P is a polygon, then
P= A+ .-+ Ay with (possibly degenerate) triangles A;.

e By approximation it suffices to show
1
A(P,M) < 3 L(P) L(M)
e By linearity, it is sufficient to consider P = A.
e By homog. and transl. inv., we can assume that B2 = B;(A).

1

:A(A,M):E/S1 h(A, u) S(M, du) <+ 1 - L(M).

N —

Lemma

If A\ is a triangle with circumball B2, then L(A\) > 4.



Modified proof of the inequality. If K = P is a polygon, then
P= A+ .-+ Ay with (possibly degenerate) triangles A;.

e By approximation it suffices to show
1
A(P,M) < 3 L(P) L(M)
e By linearity, it is sufficient to consider P = A.
e By homog. and transl. inv., we can assume that B2 = B;(A).

1

:A(A,M):E/S1 h(A, u) S(M, du) <+ 1 - L(M).

N —

Lemma

If A\ is a triangle with circumball B2, then L(A\) > 4.

= ALM) < ]

; 1
<3 L(A) - L(M) = 8 L(A) L(M).



General dimensions: For K, M € K", Minkowski’s inequality states that
V(K,M,....,M)" > V(K) V(M)

Equality holds iff K, M are homothetic or lie in parallel hyperplanes or
dim(M) < n-2.
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General dimensions: For K, M € K", Minkowski’s inequality states that
V(K,M,....,M)" > V(K) V(M)

Equality holds iff K, M are homothetic or lie in parallel hyperplanes or
dim(M) < n-2.

In the plane, the inequality states that

=

V(K, M) > V(K)z V(M)z.

Apparently, this inequality cannot be reversed by inserting some constant.

However, the result by Betke & Weil '91 can be considered a reverse form
of the planar Minkowski inequality.

Equivalently, their planar result can be stated in the form

V(K, M) < = V4(K) V4(M).

N =



Reverse Minkowski-type inequality

Theorem (Boréczky & H. ’19)
IfK,M € K", then

VK, M[n—1]) < ,1-7 Vi(K) Vi1 (M).

Ifdim(K) > 1 and dim(M) > n — 1, then equality holds iff K is a
segment and M is contained in a hyperplane orthogonal to K.

In the following, we write K}’ for the space of convex bodies which are at
least i-dimensional.



Related work |

m Betke and Weil (1991) also proved that if K € K2, then

gf

V(K, —K) < 55 L(K), (1)

and under the additional assumption that K is a polygon they showed
that equality holds in (1) iff K is a regular triangle.
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m Betke and Weil (1991) also proved that if K € K2, then

V3 2
< Y5 LK), 1)

V(K,—K)
and under the additional assumption that K is a polygon they showed
that equality holds in (1) iff K is a regular triangle.

m Betke and Weil (1991) suggested to characterize the equality cases
of (1) among all planar compact convex sets K € k2. This goal will
be achieved in a forthcoming manuscript.



Related work |

m Betke and Weil (1991) also proved that if K € K2, then

gf

V(K. —K) < <5 LK), (1)

and under the additional assumption that K is a polygon they showed
that equality holds in (1) iff K is a regular triangle.

m Betke and Weil (1991) suggested to characterize the equality cases
of (1) among all planar compact convex sets K € k2. This goal will
be achieved in a forthcoming manuscript.

m They also suggested to study sharp inequalities of the form
V(Ki[r], ..., Kelr]) < e(ry,... ) Vi (K1) -+ Vi, (K).

Inequ’s of this type are known for zonoids (Schneider & H 11, w.i.p.).
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m Saroglou, Soprunov, Zvavitch ’18: If K € K" is such that
V(Lh R Ln)V(K) < V(L17K[n7 1])V(L2’ . -»LmK)

forall Ly,...,L, € K", then K = A.
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Related work Il

m Saroglou, Soprunov, Zvavitch ’18: If K € K" is such that
V(Lh R LH)V(K) < V(L17K[n7 1])V(L2’ . '7LH7K)

forall Ly,...,L, € K", then K = A.
m They also prove the Bezout-type inequality

V(Li,... . L)V(K) < 0 V(Ly, K[n—1)V(Le, ..., Ln,K)  (B])

forall K, Ly,...,L, € K". More general inequalities: Jian Xiao '19.
m (Bl)is sharp,butfor K = B", Ly =: K, L, = --- = L, =: M states

V(K. Min 1)) < [EE % Vi(K) Vi_1(M)

-
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Theorem (Linhart ’77, Béroczky & H. ’19)

IfK € K, then
Vi(K) > 2 R(K)

with equality iff K is a segment.



Theorem (Linhart ’77, Béroczky & H. ’19)

IfK € KY, then
Vi(K) > 2R(K)

with equality iff K is a segment.

m We follow Linhart’s idea, but implement several modifications and
clarify the discussion of the equality case.

m This also prepares for stronger stability results.



Recall

Theorem (Boroczky & H. '19)

IfK,M € K", then
1
VK, Mln —1]) < — Vi(K) Va1 (M)

If dim(K) > 1 and dim(M) > n — 1, then equality holds iff K is a
segment and M is contained in a hyperplane orthogonal to K.



Proof. We can assume that ¢(K) = o. Let R(K) be the circumradius of K
and F(M) the surface area of M.
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and F(M) the surface area of M.
V(K,M[n—1]) =

<

<

SI= SI= 3=

Then
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FVA(K) 2V 1 (M) (2)
Vi (K) V1 (M).



Proof. We can assume that ¢(K) = o. Let R(K) be the circumradius of K

and F(M) the surface area of M.
V(K,M[n—1]) =

<

<

Then

1 /S k() Sp1(M, o)

5 R(K) F(M) (1)
L IVi(K) 2V,_1(M) 2)
Vi (K) Vo1 (M).

If equality holds, then equality holds in (2), since V,,_1(M) > 0. Hence
K = [—Re, Re] with R = R(K) and for some e € S"~".



Proof. We can assume that ¢(K) = o. Let R(K) be the circumradius of K
Then

and F(M) the surface area of M.
V(K,M[n—1]) =

<

<

If equality holds, then equality holds in (2), since V,,_1(M) > 0. Hence

SI=

1
n
1
n
1
n

[ ) Soa(a.
R(K) F(M)

%V1 (K) 2V,-1(M)
Vi(K)Va_1(M).

K = [—Re, Re] with R = R(K) and for some e € S"~".
Then also (1) holds with equality, which yields

/S l(w,)| S5 1(M, o) = F(M).



Proof. We can assume that ¢(K) = o. Let R(K) be the circumradius of K
and F(M) the surface area of M. Then

VKM =) =& [ ) Soo(M. )
sn—1
< 1 R(K) F(M) (1)
< 1 IVi(K) 2V,-1(M) 2)
= LVi(K) Va1 (M).

If equality holds, then equality holds in (2), since V,,_1(M) > 0. Hence
K = [—Re, Re] with R = R(K) and for some e € S"~".
Then also (1) holds with equality, which yields

/S l(w,)| S5 1(M, o) = F(M).

This implies that S,_1(M, -) has support {—e, e}, hence M is contained in
a hyperplane orthogonal to e.



Recall

Theorem (Linhart *77, Béréczky & H. ’19)

IfK € KY, then
Vi(K) > 2 R(K)

with equality iff K is a segment.



In the proof, the following lemma is crucial.

Forze S"'anda € (0,7), let B(z,a) = {x € S"': (x,z) > cosa}
be the spherical cap centered at z and of radius .

Lemma (Monotonicity)

Ifa €(0,3],n>2,zcS" " and N C B(z, ) is compact and
spherically starshaped with respect to z, then

/ (2, u) H™ (du)
B(z,a)

H Bz (M

/ (2, u) 1 (dlu) >
il

If z € intg(), then equality holds iff Tl = B(z, «).



Proof of the Theorem.

We can assume that B” is the circumball of K, hence R(K) = 1.
Then the origin o is contained in the convex hull of xy,...,xx € S ' N K
with2 < k< n+1.



Proof of the Theorem.

We can assume that B” is the circumball of K, hence R(K) = 1.
Then the origin o is contained in the convex hull of xy,...,xx € S ' N K
with2 < k< n+1.

Fori=1,..., k, we define the Dirichlet-Voronoi cells
Di={xeS"": (x,x) > (x,x)forj=1,... k} C B(x,-,%) )

Then D is starshaped with respect to x; € ints(D;) and

k
Z an—1 (Di) — an—1 (Sn—1 )

i=1

For x € Dj, we have h([x1, ..., x|, x) = (X, X;).



Then,

Vi(K) > Vi([xa, - - o xl]) = /{” V([x1,- ., x], B"[n — 1])

n—

1 ‘ n—1 X
Hn_1Z/Di<x,x,->H ()

i=1

k
1 2/{:”71 —1
>3 e (P =2

-




Then,

Vi(K) > Vi([xa, - x]) =

V(ixi, ... xd, B [n—1]) @)

n—

- Z/xx,%“dx)
RKn—1

i=1

1 2Kn_1 1
> E . A
it 2 = 1(8” 1) H (D,) 2. (3)

If Vi(K) = 2, then equality in (2) yields that K = [x1, ..., Xk].

Moreover, by the Lemma strict inequality holds in (3) if D; # B (x,, 2) for

someie€ {1,...

k).

Hence, if equality holds, we must have k = 2 and K = [x1, x2].



Stability |

Vi(K) > 2R(K).



Stability |

Vi(K) > 2R(K).

Theorem (Boroczky & H. ’19)
Let K € Kf. For some small ¢ > 0, suppose that

Vi(K) < (2 + €)R(K).
Then there exists a segment s of length (2 — ~v12) R(K) such that
SCKCs+ ’YQR(K)\/EB”,

where v1,v2 > 0 are constants depending on n.



Stability II

V(K, M[n—1]) < % Vi(K) Vi1 (M).



Stability Il
V(K, M[n—1]) < % Vi(K) Vi1 (M).

Theorem (Borbéczky & H. ’19)
LetK € K] and M € K],_,. For some ¢ € (0, gg), suppose that

VK, M[n—1]) > (1 —¢) % V(K) Vo1 (M).

Then there exists e € S"~', a segment s of length (2 — ~1¢)R(K) parallel
to e such thats C K C s + v2R(K)+/zB", and thereisaf € S"~ s.t.

hM(f)'i‘hM(—f)S’ere%, (e,f) > 1 —yov/e,

where r is the maximal radius of an (n — 1)-ball in M|e*, and
Y1, Y2, €0 > 0 are constants depending on n.



Stability Il

[ el Spilbon) <2V, i(M). ees



Stability Ill

/ (e, u)| Sp_1(M, du) < 2V, (M), ecS™.
§n—1

Proposition (Bérdczky & H. ’19)

Lete € (0,4 (2-)") and e € S™'. Suppose that M € K7_, is such that

[ Vel Soea(M. ) = (1 = c)2Vis(M)

Then there is some f € S"~! such that
() + hu(—f) < crry/e, (e,f) > 1 — cge,

where c; < 48n2\/6", cs < (10n)*(2n)" and r is as before.



An application to random tessellations

Geometric stability results have been useful also in stochastic geometry.

Theorem (Boréczky & H. ’19)

Let Zy denote the zero cell of a stationary and isotropic Poisson
hyperplane tessellation in R" with intensity A > 0. Then there is a
constant ¢y (depending on n) such that the following holds. Ife > 0 and
0<a<b< oo, then

P(3(Z) > ¢ | R(Z) € [a, b)) < c exp{cocal},

where c is a constant which depends on n, ¢.

This completes the discussion of an application of a general result in
Schneider & H '07 to a specific functional.
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