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The isoperimetric inequality for a convex body K ∈ K2
o states that

A(K ) ≤ 1
4π

L(K )2

with equality iff K is a Euclidean 2-ball.

Since for K ,M ∈ K2
o,

A(K + M) = A(K ) + 2 A(K ,M) + A(M)

and

L(K + M)2 = L(K )2 + 2 L(K )L(M) + L(M)2,

it is tempting to ask:

A(K ,M) ≤ c L(K ) L(M) with c =
1

4π
?
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Choose K = [o, e1] and M = [o, e2]. Then

A(K ,M) =
1
2

(A(K + M)− A(K )− A(M)) =
1
2

and
L(K ) = L(M) = 2.

Hence, necessarily

c ≥ A(K ,M)

L(K ) L(M)
≥ 1

8
≥ 1

4π
.

This is in fact best possible.



Theorem (Betke, Weil ’91)

If K ,M ∈ K2, then

A(K ,M) ≤ 1
8

L(K ) L(M)

with equality iff K and M are (possibly degenerate) orthogonal segments.

Proof. Use Choquet representation of convex sets (integral version of the
Krein-Milman theorem). Characterization of the equality case is more
subtle.
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Modified proof of the inequality. If K = P is a polygon, then
P = 41 + · · ·+4m with (possibly degenerate) triangles4i .

• By approximation it suffices to show

A(P,M) ≤ 1
8

L(P) L(M)

• By linearity, it is sufficient to consider P = 4.
• By homog. and transl. inv., we can assume that B2 = Bc(4).

⇒ A(4,M) =
1
2

∫
S1

h(4, u) S(M, du) ≤ 1
2
· 1 · L(M).

Lemma

If4 is a triangle with circumball B2, then L(4) ≥ 4.

⇒ A(4,M) ≤ 1
2
· 1

4 L(4) · L(M) =
1
8

L(4) L(M).
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General dimensions: For K ,M ∈ Kn, Minkowski’s inequality states that

V (K ,M, . . . ,M)n ≥ V (K ) V (M)n−1.

Equality holds iff K ,M are homothetic or lie in parallel hyperplanes or
dim(M) ≤ n − 2.

In the plane, the inequality states that

V (K ,M) ≥ V (K )
1
2 V (M)

1
2 .

Apparently, this inequality cannot be reversed by inserting some constant.

However, the result by Betke & Weil ’91 can be considered a reverse form
of the planar Minkowski inequality.

Equivalently, their planar result can be stated in the form

V (K ,M) ≤ 1
2

V1(K ) V1(M).
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Reverse Minkowski-type inequality

Theorem (Böröczky & H. ’19)
If K ,M ∈ Kn, then

V (K ,M[n − 1]) ≤ 1
n

V1(K ) Vn−1(M).

If dim(K ) ≥ 1 and dim(M) ≥ n − 1, then equality holds iff K is a
segment and M is contained in a hyperplane orthogonal to K .

In the following, we write Kn
i for the space of convex bodies which are at

least i-dimensional.



Related work I

Betke and Weil (1991) also proved that if K ∈ K2, then

V (K ,−K ) ≤
√

3
18

L2(K ), (1)

and under the additional assumption that K is a polygon they showed
that equality holds in (1) iff K is a regular triangle.

Betke and Weil (1991) suggested to characterize the equality cases
of (1) among all planar compact convex sets K ∈ K2. This goal will
be achieved in a forthcoming manuscript.

They also suggested to study sharp inequalities of the form

V (K1[r1], . . . ,K`[r`]) ≤ c(r1, . . . , r`) Vr1(K1) · · ·Vr`(K`).

Inequ’s of this type are known for zonoids (Schneider & H ’11, w.i.p.).
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Related work II

Saroglou, Soprunov, Zvavitch ’18: If K ∈ Kn is such that

V (L1, . . . , Ln)V (K ) ≤ V (L1,K [n − 1])V (L2, . . . , Ln,K )

for all L1, . . . , Ln ∈ Kn, then K = 4.

They also prove the Bezout-type inequality

V (L1, . . . , Ln)V (K ) ≤ n V (L1,K [n − 1])V (L2, . . . , Ln,K ) (BI)

for all K , L1, . . . , Ln ∈ Kn. More general inequalities: Jian Xiao ’19.

(BI) is sharp, but for K = Bn, L1 =: K , L2 = · · · = Ln =: M states

V (K ,M[n − 1]) ≤ 2κn−1
κn
· 1

n
V1(K ) Vn−1(M)

with
2κn−1
κn

∼
√

2
π
·
√

n.
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Theorem (Linhart ’77, Böröczky & H. ’19)
If K ∈ Kn

1, then
V1(K ) ≥ 2 R(K )

with equality iff K is a segment.

We follow Linhart’s idea, but implement several modifications and
clarify the discussion of the equality case.

This also prepares for stronger stability results.
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Recall

Theorem (Böröczky & H. ’19)
If K ,M ∈ Kn, then

V (K ,M[n − 1]) ≤ 1
n

V1(K ) Vn−1(M).

If dim(K ) ≥ 1 and dim(M) ≥ n − 1, then equality holds iff K is a
segment and M is contained in a hyperplane orthogonal to K .



Proof. We can assume that c(K ) = o. Let R(K ) be the circumradius of K
and F(M) the surface area of M. Then

V (K ,M[n − 1]) = 1
n

∫
Sn−1

hK (u) Sn−1(M, du)

≤ 1
n R(K ) F(M) (1)

≤ 1
n

1
2V1(K ) 2Vn−1(M) (2)

= 1
n V1(K )Vn−1(M).

If equality holds, then equality holds in (2), since Vn−1(M) > 0. Hence
K = [−Re,Re] with R = R(K ) and for some e ∈ Sn−1.
Then also (1) holds with equality, which yields∫

Sn−1
|〈u, e〉|Sn−1(M, du) = F(M).

This implies that Sn−1(M, ·) has support {−e, e}, hence M is contained in
a hyperplane orthogonal to e.
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In the proof, the following lemma is crucial.

For z ∈ Sn−1 and α ∈ (0, π), let B(z, α) = {x ∈ Sn−1 : 〈x , z〉 ≥ cosα}
be the spherical cap centered at z and of radius α.

Lemma (Monotonicity)

If α ∈ (0, π2 ], n ≥ 2, z ∈ Sn−1 and Π ⊂ B(z, α) is compact and
spherically starshaped with respect to z, then

∫
Π
〈z, u〉Hn−1(du) ≥

∫
B(z,α)

〈z, u〉Hn−1(du)

Hn−1(B(z, α))
· Hn−1(Π).

If z ∈ ints(Π), then equality holds iff Π = B(z, α).



Proof of the Theorem.

We can assume that Bn is the circumball of K , hence R(K ) = 1.
Then the origin o is contained in the convex hull of x1, . . . , xk ∈ Sn−1 ∩ K
with 2 ≤ k ≤ n + 1.

For i = 1, . . . , k , we define the Dirichlet-Voronoi cells

Di = {x ∈ Sn−1 : 〈x , xi〉 ≥ 〈x , xj〉 for j = 1, . . . , k} ⊂ B
(

xi ,
π

2

)
.

Then Di is starshaped with respect to xi ∈ ints(Di) and

k∑
i=1

Hn−1(Di) = Hn−1(Sn−1).

For x ∈ Di , we have h([x1, . . . , xk ], x) = 〈x , xi〉.
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Then,

V1(K ) ≥ V1([x1, . . . , xk ]) =
n

κn−1
V ([x1, . . . , xk ],Bn[n − 1]) (2)

=
1

κn−1

k∑
i=1

∫
Di

〈x , xi〉Hn−1(dx)

≥ 1
κn−1

k∑
i=1

2κn−1

Hn−1(Sn−1)
· Hn−1(Di) = 2. (3)

If V1(K ) = 2, then equality in (2) yields that K = [x1, . . . , xk ].

Moreover, by the Lemma strict inequality holds in (3) if Di 6= B
(
xi ,

π
2

)
for

some i ∈ {1, . . . , k}.

Hence, if equality holds, we must have k = 2 and K = [x1, x2].
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Stability I

V1(K ) ≥ 2R(K ).

Theorem (Böröczky & H. ’19)
Let K ∈ Kn

1. For some small ε > 0, suppose that

V1(K ) ≤ (2 + ε)R(K ).

Then there exists a segment s of length (2− γ1ε)R(K ) such that

s ⊂ K ⊂ s + γ2R(K )
√
εBn,

where γ1, γ2 > 0 are constants depending on n.
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Stability II

V (K ,M[n − 1]) ≤ 1
n

V1(K ) Vn−1(M).

Theorem (Böröczky & H. ’19)
Let K ∈ Kn

1 and M ∈ Kn
n−1. For some ε ∈ (0, ε0), suppose that

V (K ,M[n − 1]) ≥ (1− ε)
1
n

V1(K )Vn−1(M).

Then there exists e ∈ Sn−1, a segment s of length (2− γ1ε)R(K ) parallel
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Stability III

∫
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An application to random tessellations

Geometric stability results have been useful also in stochastic geometry.

Theorem (Böröczky & H. ’19)
Let Z0 denote the zero cell of a stationary and isotropic Poisson
hyperplane tessellation in Rn with intensity λ > 0. Then there is a
constant c0 (depending on n) such that the following holds. If ε > 0 and
0 < a < b ≤ ∞, then

P(ϑ(Z0) ≥ ε | R(Z0) ∈ [a, b)) ≤ c exp{c0 ε aλ},

where c is a constant which depends on n, ε.

This completes the discussion of an application of a general result in
Schneider & H ’07 to a specific functional.
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