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Euclidean space

Bn ∈ K(Rn) is the Euclidean unit ball, ωn = |Bn|.
For K ∈ K(Rn), µk(K ), k = 0, . . . , n are its intrinsic volumes.
They can be defined in several ways:

• Steiner formula: vol(K + εBn) =
∑n

k=0 ωn−kµk(K )εn−k .

• Crofton formulas.

µk(K ) =

ˆ
AGrn−k (Rn)

χ(K ∩ E )dσn−k(E )
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Valuations on manifolds

• Let Mn be a smooth oriented manifold with some Riemannian structure, SM the
unit sphere bundle
• P(M) will be the set of compact differentiable polyhedra.

Definition

For K ∈ P(M), its normal cycle is nc(K) ⊂ SM. (x , v) ∈ nc(K) ⇐⇒ 〈v , γ̇〉 ≤ 0 for
all curves γ ⊂ K s.t. γ(0) = x . nc(K) ⊂ SM is a Lipschitz submanifold of dimension
n − 1.

Definition (Alesker, Fu)

A pair µ ∈ Ωn(M), ω ∈ Ωn−1(SM) defines a smooth valuation φ ∈ V∞(M), given by
φ : P(M)→ R, φ(K) =

´
K

µ+
´

nc(K)

ω.

Theorem (Alesker)

• There is a product V∞(M)⊗ V∞(M)→ V∞(M).

• If e : M ↪→ N is an embedding, the restriction e∗ : V∞(N)→ V∞(M) respects
the product. We write e∗φ = φ|M .
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Riemannian Lipschitz-Killing curvatures

Theorem (Weyl)

Let (Mn, g) be a closed Riemannian manifold. Embed isometrically M ⊂ RN .
Let Mε denote the ε-extension. Then volN(Mε) =

∑n
k=0 ωn−kµk(M)εN−k for

small ε.
Remarkably, µk(M) only depends on (M, g).

Theorem (Weyl, Chern, . . . )

There are natural k-homogeneous assignments µk , k = 0, 1, . . . that assign to
a Riemannian manifold a valuation:

µM,g
k ∈ V∞(M), µM,λ2g

k = λkµM,g
k .

If e : M ↪→ N is an isometric embedding, e∗µN
k = µM

k .

Examples: For X ⊂ Mn: µ0(X ) = χ(X ), µn(X ) = voln(X ), µn−1(X ) = 1
2

voln−1(∂X ).

The Weyl principle - loosely defined as the existence in a category of natural
valuations that are invariant under embeddings - has been extended to Kähler,
semi-Riemannian, and contact manifolds. Conjectured extension to Alexandrov
spaces.
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Volumes in Banach space

Let (V ,F ) be a normed space with unit ball BF , henceforth assumed
smooth and strictly convex.
How to measure volume in V ? More than one possibility:

Definition (Busemann volume)

Set volBuV ,F (BF ) = ωn. This is just the Hausdorff measure.

From the symplectic and integral-geometric perspectives, the following
definition appears more natural.

Definition (Holmes-Thompson volume)

Set volHTV ,F (BF ) = 1
ωn
|BF × Bo

F |.

• If E ⊂ V is a linear subspace, it inherits a norm F |E and so a Lebesgue
measure volHTE ,F ∈ Dens(E ).

• If X k ∈ P(V ) is compact, we can compute volHTk (X ) :=
´
X
d volHTTxX ,F .
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The Holmes-Thompson intrinsic volumes

Theorem (Schneider-Wieacker, Alvarez-Paiva – Fernandes, Bernig)

Let (Rn,F ) be a normed space. There are for 0 ≤ k ≤ n translation-invariant
valuations µFk ∈ V

∞(Rn), k-homogeneous in F , such that for all E ⊂ Rn with

dimE = k, µFk |E = volHTE ,F .

⇒ If U ⊂ V is isometric, µVk |U = µUk .
Construction:

• Using the Alesker-Fourier transform:

µFk = cn,kFV (•[n − k],Bo
F [k])

• Using Crofton formulas (Alvarez-Paiva – Fernandes):

µFk (K) =

ˆ
AGrn−k (Rn)

χ(K ∩ E)dΦn−k (E)

Here Φn−k ∈M(AGrn−k (Rn))tr depends explicitly on F . In particular, Φn−1

can be identified with the inverse cosine transform of F ∈ C∞(Sn−1).
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The Holmes-Thompson intrinsic volumes 2

Remark

Note that the Holmes-Thompson intrinsic volumes µFk (K ) are not
the coefficients of volHT (K + εBF ).

Uniqueness (in stance of Hadwiger’s characterization):

• µFk is uniquely determined by the condition µFk |E = volHTE ,F
∀E ∈ Grk(Rn), by Klain’s theorem.

• Alternatively: µF1 is uniquely determined by µ1([0, x ]) = F (x)
for all x ∈ Rn. For k > 1, µFk = cn,k(µF1 )k .
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Finsler manifolds

Definition

A Finsler manifold (M, f ) is a smooth manifold M with f ∈ C∞(TX \ 0) a
strictly convex norm on every tangent space.

Question (Fu)

Given an isometric embedding e : (M, f ) ↪→ (V ,F ) of a Finsler manifold in a
normed space, does e∗µF

k = µF
k |e(M) depend on (M, f ) alone?

The answer is trivially YES for dimM ≤ 2: for X 2 ⊂ M2,

µF
0 (X ) = χ(X ), µF

1 (X ) =
1

2
LengthF (∂X ), µF

2 (X ) = AreaHT
F (X )

Answer (F-Wannerer)

The Weyl principle does not hold in the Finsler category:
∃ a Finsler manifold M3 and two isometric embeddings ej : M ↪→ (R7,Fj),
j = 1, 2, such that e∗1 µ

F1
1 6= e∗2 µ

F2
1 .

Dmitry Faifman The Weyl principle in Finsler geometry
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The weak Weyl principle

Definition (Global weak Weyl principle)

Assume Mm ⊂ V n is a submanifold in a linear space. It satisfies the global weak Weyl
principle if whenever F1,F2 are two norms on V such that F1|M = F2|M , then also

µF1
k |M = µF2

k |M for all k.

It is more natural to consider this property locally.

Definition (Local weak Weyl principle)

We say M ⊂ V satisfies the local weak Weyl principle if GWWP holds for all open
subsets U ⊂ M.

Theorem (A Finslerian weak Weyl principle in small codimension(F-Wannerer))

Assume dimV ≤ 2 dimM. Then M ⊂ V satisfies LWWP.

Theorem (No weak Weyl principle in high codimension (F-Wannerer))

A generic M ⊂ V with dimV ≥ 2 dimM + 1 does not satisfy GWWF.
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Preparation 1

• Given an embedding e : Mm ↪→ V n, e∗ : V∞(V )→ V∞(M) respects the
Alesker product. Since µF

k = c(µF
1 )k , it suffices to prove (or disprove)

WWP for µF
1 .

• We fix a Euclidean structure on V , and the induced Riemannian structure
on M. There are canonic contact forms θV0 ∈ Ω1(SV ), θM0 ∈ Ω1(SM).

• The second fundamental form is hp : Sym2(TpM)→ T⊥p M.

By a theorem of Bernig-Bröcker, there is a natural linear inclusion
(C ,T ) : V∞(M) ↪→ C∞(M)× Ωn(SM).

Lemma

Consider (V n,F ), µF
1 ∈ V∞(V ), F ∈ C∞(Sn−1).

C(µF
1 ) = 0, T (µF

1 ) = C−1
n (F ) θV0 ∧ volSn−1 .

where Cn : C∞(Sn−1)→ C∞(Sn−1), Cnf (v) =
´
Sn−1 |〈u, v〉|f (u)du is the

cosine transform.
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Preparation 2 - the restriction

• Let ΦM = {(p; uj)
m−1
j=0 } be the orthonormal frame bundle over M,

u0 : ΦM → SM. Identify Ω(SM) ≡ u∗0 Ω(SM) ⊂ Ω(ΦM).

• Let θj = 〈uj , •〉 ∈ Ω1(ΦM) be the solder forms, and ωi,j ∈ Ω1(ΦM)
the corresponding connection forms.

• Let Pk
m−1 be the set of increasing functions

σ : {1, . . . , k} → {1, . . . ,m − 1}.

T (e∗µF
1 ) = θ0 ∧

m−1∑
k=0

∑
σ∈Pk

m−1

∑
τ∈Pm−1−k

m−1

Ak
στ

k∧
j=1

θσ(j) ∧
m−1−k∧

j=1

ωτ(j),0.

The coefficients are given by

Ak
στ (p; uj) =

ˆ π/2

0

ˆ
S(T⊥p M)

cosm−k φ sinn−m−1+k φ·

· det〈hστ c (p),N〉 C−1
n F (cosφu0 + sinφN)dφdN

Note: Ak
στ depends linearly on F .
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Integral evaluation: warm up

θ : SM → Sn−1 is the obvious map θ(p, u) = u.
Recall the cosine transform Cm : C∞(SpM)→ C∞(SpM).

Lemma

A0|SpM = C−1
m (F |SpM)

In particular, A0 only depends on F |θ(SM).

Let Hm : C∞(Sm−1)→ C∞(Sm−1), Hmf (v) =
´
v :〈u,v〉≥0 f (u)du

be the hemispherical transform.

Lemma

A1
στ (p; (uj)) =

1

2
H−1
m (u′ 7→ 〈hσ,τ c (p),∇F (u′)〉)

So a-priori A1
στ depends also on ∇F |θ(SM).
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Integral evaluation: general case

For F ∈ C∞(Sn−1), u ∈ Sn−1, N ∈ S(T⊥u Sn−1), λ ∈ R, Ñ = λN
write

∂k

∂Ñk
F (u) = λk

∂k

∂Nk
F (u).

Proposition - a stability estimate

The coefficients Ak
στ at p ∈ M are determined by the restriction to

SpM of all derivatives ∂ i

∂ i Ñ
F , i ≤ k , for all vectors Ñ ∈ Image(hp).

Moreover, there are constants L = L(n,m) and c = c(n,m) such
that

‖Ak
στ‖C0(SpM) ≤ c sup

v1,v2∈SpM

k∑
j=0

‖ ∂j

∂[hp(v1, v2)]j
F‖CL(SpM)

Dmitry Faifman The Weyl principle in Finsler geometry



Valuations and intrinsic volumes Intrinsic volumes in Banach space The Weyl principle Main steps of the proof Conclusion

Integral evaluation: general case

For F ∈ C∞(Sn−1), u ∈ Sn−1, N ∈ S(T⊥u Sn−1), λ ∈ R, Ñ = λN
write

∂k

∂Ñk
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Back to geometry

• Key observation: For u ∈ SpM, Ñ ∈ T⊥p M, ∂j

∂Ñ j F (u) is determined by

F |θ(SM) if Ñ = hp(u, v) for some v ∈ TpM.

Letting u(t) be the parallel transport of u along p(t), p′(0) = v ,

∂F

∂[hp(u, v)]
(u) =

d

dt

∣∣∣∣
t=0

F (u(t))

• For generic M,

dim Image(hp(u, •)) = min(m, n −m)

dim Image(hp(•, •)) = min(

(
m + 1

2

)
, n −m)

• If n ≤ 2m, a generic M satisfies
Image(hp(u, •)) = Image(hp(•, •)) = T⊥p M.

• The stability estimate allows to deduce the general case from the generic
case by a perturbation argument.

• For n > 2m, a generic M has Image(hp(u, •)) 6= Image(hp(•, •)), and a
careful examination yields an explicit counterexample for m ≥ 3.
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F |θ(SM) if Ñ = hp(u, v) for some v ∈ TpM.

Letting u(t) be the parallel transport of u along p(t), p′(0) = v ,

∂F

∂[hp(u, v)]
(u) =

d

dt

∣∣∣∣
t=0

F (u(t))

• For generic M,

dim Image(hp(u, •)) = min(m, n −m)

dim Image(hp(•, •)) = min(

(
m + 1

2

)
, n −m)

• If n ≤ 2m, a generic M satisfies
Image(hp(u, •)) = Image(hp(•, •)) = T⊥p M.

• The stability estimate allows to deduce the general case from the generic
case by a perturbation argument.

• For n > 2m, a generic M has Image(hp(u, •)) 6= Image(hp(•, •)), and a
careful examination yields an explicit counterexample for m ≥ 3.

Dmitry Faifman The Weyl principle in Finsler geometry



Valuations and intrinsic volumes Intrinsic volumes in Banach space The Weyl principle Main steps of the proof Conclusion

Back to geometry

• Key observation: For u ∈ SpM, Ñ ∈ T⊥p M, ∂j
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The End

Thanks for listening!
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