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000

Euclidean space

B" € K(R") is the Euclidean unit ball, w, = |B"|.
For K € IK(R"), uk(K), k =0,...,n are its intrinsic volumes.
They can be defined in several ways:

e Steiner formula: vol(K + €B") = >} wa_kpk(K)e™ .

e Crofton formulas.

(K) = / (K N E)do,_(E)
AGr,_(R")
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Valuations on manifolds

e Let M" be a smooth oriented manifold with some Riemannian structure, SM the
unit sphere bundle
o P(M) will be the set of compact differentiable polyhedra.

Definition

For K € P(M), its normal cycle is nc(K) C SM. (x, v) € nc(K) <= (v,¥) <0 for
all curves v C K s.t. 4(0) = x. nc(K) C SM is a Lipschitz submanifold of dimension
n—1.
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For K € P(M), its normal cycle is nc(K) C SM. (x, v) € nc(K) <= (v,¥) <0 for
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Valuations on manifolds

e Let M" be a smooth oriented manifold with some Riemannian structure, SM the
unit sphere bundle
o P(M) will be the set of compact differentiable polyhedra.

For K € P(M), its normal cycle is nc(K) C SM. (x, v) € nc(K) <= (v,¥) <0 for
all curves v C K s.t. 4(0) = x. nc(K) C SM is a Lipschitz submanifold of dimension
n—1.

Definition (Alesker, Fu)
A pair u € Q"(M), w € Q"~1(SM) defines a smooth valuation ¢ € V>°(M), given by

¢:P(M) =R, ¢(K)=[p+ [ w
K nc(K)

Theorem (Alesker)
e There is a product V>° (M) ® V>°(M) — V>°(M).

o Ife: M — N is an embedding, the restriction e* : V>°(N) — V°°(M) respects
the product. We write e*¢ = ¢|u.
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Riemannian Lipschitz-Killing curvatures

Theorem (Weyl)

Let (M", g) be a closed Riemannian manifold. Embed isometrically M C R".
Let M. denote the e-extension. Then voly(Mc) = >7] w,,_k,uk(l\/l)e'\’_k for
small e.

Remarkably, wu«(M) only depends on (M, g).
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Theorem (Weyl, Chern, ...)

There are natural k-homogeneous assignments px, k =0,1,... that assign to
a Riemannian manifold a valuation:

2
pE e VE(M), N E = akhe

If e: M < N is an isometric embedding, e*ul = u.
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Let (M", g) be a closed Riemannian manifold. Embed isometrically M C R".
Let M. denote the e-extension. Then voly(Mc) = >7] w,,_k,uk(l\/l)e'\’_k for
small e.

Remarkably, wu«(M) only depends on (M, g).

Theorem (Weyl, Chern, ...)

There are natural k-homogeneous assignments px, k =0,1,... that assign to
a Riemannian manifold a valuation:

2
pE e VE(M), N E = akhe

If e: M < N is an isometric embedding, e*ul = u.
o

Examples: For X C M"™: po(X) = x(X), un(X) = vola(X), pn—1(X) = %voln_l(aX).
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Riemannian Lipschitz-Killing curvatures

Theorem (Weyl)

Let (M", g) be a closed Riemannian manifold. Embed isometrically M C R".
Let M. denote the e-extension. Then voly(Mc) = >7] w,,_k,uk(l\/l)e'\’_k for
small e.

Remarkably, wu«(M) only depends on (M, g).

Theorem (Weyl, Chern, ...)

There are natural k-homogeneous assignments px, k =0,1,... that assign to
a Riemannian manifold a valuation:

2
pE e VE(M), N E = akhe

If e: M < N is an isometric embedding, e*ul = u.

o
Examples: For X C M": po(X) = x(X), pn(X) = vola(X), pn—1(X) = %voln_l(aX).
The Weyl principle - loosely defined as the existence in a category of natural
valuations that are invariant under embeddings - has been extended to Kahler,
semi-Riemannian, and contact manifolds. Conjectured extension to Alexandrov
spaces.
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Volumes in Banach space

Let (V, F) be a normed space with unit ball Bg, henceforth assumed
smooth and strictly convex.
How to measure volume in V7 More than one possibility:

Definition (Busemann volume)

Set voIﬁﬁ’,_—(B,:) = wp. This is just the Hausdorff measure.

From the symplectic and integral-geometric perspectives, the following
definition appears more natural.

Definition (Holmes-Thompson volume)

Set vol{)’=(BF) = X |Br x Bg|.

e If E C V is a linear subspace, it inherits a norm F|g and so a Lebesgue
measure volgjE € Dens(E).

o If Xk € P(V) is compact, we can compute volf" (X) := Ix dvoI'f—XTX,F.
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The Holmes-Thompson intrinsic volumes

Theorem (Schneider-Wieacker, Alvarez-Paiva — Fernandes, Bernig)

Let (R, F) be a normed space. There are for 0 < k < n translation-invariant
valuations ,uf € V>°(R"), k-homogeneous in F, such that for all E C R" with
dim E = k, pf|e = volZT.
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The Holmes-Thompson intrinsic volumes

Theorem (Schneider-Wieacker, Alvarez-Paiva — Fernandes, Bernig)

Let (R, F) be a normed space. There are for 0 < k < n translation-invariant
valuations ,uf € V>°(R"), k-homogeneous in F, such that for all E C R" with

dim E = k, pf|e = volZT.

= If U C V is isometric, ,U«;‘(/‘U = ,u,f(/.
Construction:

e Using the Alesker-Fourier transform:

1E = o V(sln — K], BEK])

e Using Crofton formulas (Alvarez-Paiva — Fernandes):

wf) = [ X(K 1 E)d®,_,(E)
AGr,_ (R™)

Here ®,_x € M(AGr,_(R"))* depends explicitly on F. In particular, ®,_1
can be identified with the inverse cosine transform of F € C*>(S"~1).
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The Holmes-Thompson intrinsic volumes 2

Note that the Holmes-Thompson intrinsic volumes ,uf(K) are not
the coefficients of volyT(K + €Bf).
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Note that the Holmes-Thompson intrinsic volumes ,uf(K) are not
the coefficients of volyT(K + €Bf).

Uniqueness (in stance of Hadwiger's characterization):

e 4f is uniquely determined by the condition uf |g = volgj_-
VE € Gri(R"), by Klain's theorem.
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The Holmes-Thompson intrinsic volumes 2

Note that the Holmes-Thompson intrinsic volumes ,uf(K) are not
the coefficients of volyT(K + €Bf).

Uniqueness (in stance of Hadwiger's characterization):

e 4f is uniquely determined by the condition uf |g = volgj_-
VE € Gri(R"), by Klain's theorem.

e Alternatively: uf is uniquely determined by 11([0, x]) = F(x)
for all x € R". For k > 1, uf = ¢, x(uf)k.

Dmitry Faifman



The Weyl principle
0

Finsler manifolds

Definition
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strictly convex norm on every tangent space.
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Finsler manifolds

A Finsler manifold (M, f) is a smooth manifold M with f € C*=(TX \ 0) a
strictly convex norm on every tangent space.

Given an isometric embedding e : (M, f) < (V/, F) of a Finsler manifold in a
normed space, does e*uf = jif |«(m) depend on (M, f) alone?

The answer is trivially YES for dim M < 2: for X*> C M?,

WE(X) = X(X), uE(X) = S Lengthe(0X),  pE(X) = Areal!"(X)

Answer (F-Wannerer)

The Weyl principle does not hold in the Finsler category:
3 a Finsler manifold M and two isometric embeddings ¢ : M — (R’, F;),
j =1,2, such that el*,ufl = ez*,ufz.
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The weak Weyl principle

Definition (Global weak Weyl principle)

Assume M™ C V" is a submanifold in a linear space. It satisfies the global weak Weyl
principle if whenever Fi, F> are two norms on V such that Fi|y = F2|p, then also

F F,
et v = w* |m for all k.
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Definition (Global weak Weyl principle)

Assume M™ C V" is a submanifold in a linear space. It satisfies the global weak Weyl
principle if whenever Fi, F> are two norms on V such that Fi|y = F2|p, then also

F F,
et v = w* |m for all k.

It is more natural to consider this property locally.

Definition (Local weak Weyl principle)

We say M C V satisfies the local weak Weyl principle if GWWP holds for all open
subsets U C M.
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The weak Weyl principle

Definition (Global weak Weyl principle)

Assume M™ C V" is a submanifold in a linear space. It satisfies the global weak Weyl
principle if whenever Fi, F> are two norms on V such that Fi|y = F2|p, then also

F F,
et v = w* |m for all k.

It is more natural to consider this property locally.

Definition (Local weak Weyl principle)

We say M C V satisfies the local weak Weyl principle if GWWP holds for all open
subsets U C M.

Theorem (A Finslerian weak Weyl principle in small codimension(F-Wannerer))

Assume dim V < 2dim M. Then M C V satisfies LIWWP.
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The weak Weyl principle

Definition (Global weak Weyl principle)

Assume M™ C V" is a submanifold in a linear space. It satisfies the global weak Weyl
principle if whenever Fi, F> are two norms on V such that Fi|y = F2|p, then also

F F,
et v = w* |m for all k.

It is more natural to consider this property locally.

Definition (Local weak Weyl principle)

We say M C V satisfies the local weak Weyl principle if GWWP holds for all open
subsets U C M.

Theorem (A Finslerian weak Weyl principle in small codimension(F-Wannerer))

Assume dim V < 2dim M. Then M C V satisfies LIWWP.

Theorem (No weak Weyl principle in high codimension (F-Wannerer))

A generic M C V with dim V > 2dim M + 1 does not satisfy GWWEF.
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Preparation 1

e Given an embedding e : M™ — V", e* : V*°(V) — V(M) respects the
Alesker product. Since uf, = c(uf)*, it suffices to prove (or disprove)
WWP for puf.
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Preparation 1

e Given an embedding e : M™ — V", e* : V*°(V) — V(M) respects the
Alesker product. Since uf, = c(uf)*, it suffices to prove (or disprove)
WWP for puf.

e We fix a Euclidean structure on V/, and the induced Riemannian structure
on M. There are canonic contact forms 6y € Q'(SV), 6} € Q'(SM).

e The second fundamental form is h, : Sym?(T,M) — T,"M.

By a theorem of Bernig-Brocker, there is a natural linear inclusion
(C, T): V(M) = C®(M) x Q"(SM).

Consider (V", F), uf € V>°(V), F € C=(5" ).

C(u1)=0,  T(ui)=Cy"(F)5 Avolsr.

where Cp 0 C(S"7) = C™(S"1), Caf (V) = [goor [{u, v)|f(u)du is the

cosine transform.
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Preparation 2 - the restriction

o Let M = {(p; uj)j’":’ol} be the orthonormal frame bundle over M,
up : M — SM. Identify Q(SM) = uQ(SM) C Q(eM).
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the corresponding connection forms.
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o Let M = {(p; uj)j’":’ol} be the orthonormal frame bundle over M,
up : M — SM. Identify Q(SM) = uQ(SM) C Q(eM).

o Let 0; = (u;, ) € Q(®M) be the solder forms, and w; ; € Q}(PM)
the corresponding connection forms.

e Let PX_, be the set of increasing functions
o:{1,...,k} = {1,....m—1}.

m—1—k

Teul _90/\2 Z Z AUT/\G HEA /\ Wr(j),0-

k= OUGPk lq—gpm 1—k j=1
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Preparation 2 - the restriction

o Let M = {(p; uj)j’":’ol} be the orthonormal frame bundle over M,
up : M — SM. Identify Q(SM) = uQ(SM) C Q(eM).

o Let 0; = (u;, ) € Q(®M) be the solder forms, and w; ; € Q}(PM)
the corresponding connection forms.

e Let PX_, be the set of increasing functions
o:{1,...,k} = {1,....m—1}.

m—1—k

Teul _90/\2 Z Z AUT/\G HEA /\ Wr(j),0-

k= OUGPk lq—gpm 1—k j=1

The coefficients are given by

w/2
)= [ [ o ks,
0 S(TPL/\/I)

-det(hgr<(p), N) C, * F(cos pug + sin pN)dpdN
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Preparation 2 - the restriction

o Let M = {(p; uj)j’":’ol} be the orthonormal frame bundle over M,
up : M — SM. Identify Q(SM) = uQ(SM) C Q(eM).

o Let 0; = (u;, ) € Q(®M) be the solder forms, and w; ; € Q}(PM)
the corresponding connection forms.

e Let PX_, be the set of increasing functions
o:{1,...,k} = {1,....m—1}.

m—1—k

Teul _90/\2 Z Z AUT/\G HEA /\ Wr(j),0-

k= OUGPk lq—gpm 1—k j=1

The coefficients are given by

w/2
)= [ [ o ks,
0 S(TPL/\/I)

-det(hgr<(p), N) C, * F(cos pug + sin pN)dpdN

Note: AX_ depends linearly on F.
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Integral evaluation: warm up

6 : SM — S"~1 is the obvious map 0(p, u) = u.
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Integral evaluation: warm up

6 : SM — S"~1 is the obvious map 0(p, u) = u.
Recall the cosine transform Cp, : C*°(S5p,M) — C>(5,M).
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Integral evaluation: warm up

6 : SM — S"~1 is the obvious map 0(p, u) = u.
Recall the cosine transform Cp, : C*°(Sp,M) — C*(5,M).

A5 m = Ct(Fls,m)

In particular, A° only depends on F|9(5M).
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6 : SM — S"~1 is the obvious map 0(p, u) = u.
Recall the cosine transform Cp, : C*°(Sp,M) — C*(5,M).

A5 m = Ct(Fls,m)

In particular, A° only depends on F|9(5M).

Let Hp : C®°(S™1) — C®(S™Y), Hpf(v) = Jo-tuyso f(u)du
be the hemispherical transform. -
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Integral evaluation: warm up

6 : SM — S"~1 is the obvious map 0(p, u) = u.
Recall the cosine transform Cp, : C*°(Sp,M) — C*(5,M).

A5 m = Ct(Fls,m)

In particular, A° only depends on F|9(5M).

Let Hp : C®°(S™1) — C®(S™Y), Hpf(v) = Jo-tuyso f(u)du
be the hemispherical transform. -

AL (51 () = S Hin (6 (), VF()

So a-priori Al depends also on VF|g(spm).
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Integral evaluation: general case

For Fe C®°(S" 1), ue S" 1 NeS(TFS" 1), AeR, N= AN
write . .

o L 0

Nk F(u) = ONK (u).
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Integral evaluation: general case

For Fe C®°(S" 1), ue S" 1 NeS(TFS" 1), AeR, N= AN
write
ak )\k ak

S F() = X F(u),

Proposition - a stability estimate

The coefficients AX_ at p € M are determined by the restriction to
SpM of all derivatives 2= F, i < k, for all vectors N € Image(h,).
Moreover, there are constants L = L(n, m) and ¢ = ¢(n, m) such
that

A% |l co <c su
A+l cogs,my < VI’%IZP ZH(‘)[h ()] 7 Fllci(s,m)
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0000e

Back to geometry

e Key observation: For u € S,M, N e Tpi
Flocsmy if N = hy(u, v) for some v € T,M.
Letting u(t) be the parallel transport of u along p(t), p'(0) = v,

OF d
a[hp(u’ V)] (U) - E o F(U(t))

, aNJ ) is determined by

e For generic M,

dim Image(hp(u, ®)) = min(m, n — m)
dim Image(h, (e, ®)) = min( (m;r 1> ,n—m)

e If n <2m, a generic M satisfies
Image(hp(u, ®)) = Image(hp(e, o)) = TL/\/I

e The stability estimate allows to deduce the general case from the generic
case by a perturbation argument.

e For n>2m, a generic M has Image(h,(u, ®)) # Image(h,(e,®)), and a
careful examination yields an explicit counterexample for m > 3.
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The End

Thanks for listening!

Dmitry Faifman
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