Brunn-Minkowski type inequalities and conjectures

Károly Böröczky Alfréd Rényi Institute of Mathematics and CEU

Jena, September, 2019

Brunn-Minkowski inequality

$$
K, C \text{ convex bodies in } \mathbb{R}^n, \, \alpha, \beta > 0
$$
\n
$$
\alpha K + \beta C = \{ \alpha x + \beta y : x \in K, \, y \in C \}
$$
\n
$$
= \{ x \in \mathbb{R}^n : \langle u, x \rangle \le \alpha h_K(u) + \beta h_C(u) \, \forall u \in S^{n-1} \}
$$

Brunn-Minkowski inequality $\alpha, \beta > 0$

$$
V(\alpha K + \beta C)^{\frac{1}{n}} \geq \alpha V(K)^{\frac{1}{n}} + \beta V(C)^{\frac{1}{n}}
$$

with equality iff K and C are homothetic $(K = \gamma C + x, \gamma > 0)$.

Equivalent form $\lambda \in (0,1)$

$$
V((1 - \lambda) K + \lambda C) \geq V(K)^{1 - \lambda} V(C)^{\lambda}.
$$

KELK KØLK VELKEN EL 1990

Optimal transportation to prove B-M inequality

 $V(K) = V(C) = 1, K, C$ convex bodies in \mathbb{R}^n Caffarelli, Brenier $\exists C^{\infty}$ convex $\varphi : \text{int}K \to \mathbb{R}$ such that $T = \nabla \varphi : \text{int}K \to \text{int}C$ bijective & det $\nabla T = \det \nabla^2 \varphi = 1$

Gromov's argument for Brunn-Minkowski (appendix to Milman-Schechtman) $\lambda \in (0, 1), y = (1 - \lambda)x + \lambda \mathcal{T}(x) \in (1 - \lambda)K + \lambda C \implies$ $dy = det[(1 - \lambda)I_n + \lambda \nabla T(x)] dx$ $V((1-\lambda)K + \lambda C) \geq 1$ K det $[(1-\lambda)I_n + \lambda \nabla T(x)] dx \ge \int$ K $1 dx = 1$ $\det[(1-\lambda)A+\lambda B]\geq (\det A)^{1-\lambda}(\det B)^{\lambda}$ for positive definite A,B

Figalli, Maggi, Pratelli - stability of Brunn-Minkowski (strongest version by Kolesnikov, Milman)

KORKAR KERKER SAGA

Surface area measure, Minkowski's first inequality

 S_K - surface area measure on S^{n-1} of a convex body K in \mathbb{R}^n \triangleright ∂K is $C_+^2 \implies$

$$
dS_K = \kappa^{-1} d\mathcal{H}^{n-1}
$$

 $\kappa(u)$ =Gaussian curvature at $x \in \partial K$ where u is normal.

 \blacktriangleright K polytope, F_1, \ldots, F_k facets, u_i exterior unit normal at F_i

$$
S_K(\{u_i\})=\mathcal{H}^{n-1}(F_i).
$$

Minkowski's first inequality If $V(K) = V(C)$, then

$$
\int_{S^{n-1}}h_C dS_K \geq \int_{S^{n-1}}h_K dS_K,
$$

KELK KØLK VELKEN EL 1990

with equality iff K and C are translates.

Minkowski problem - characterize S_K

Given Borel measure μ on S^{n-1} with $\int_{S^{n-1}} u \, d\mu(u) = o$ = origin, to solve the Minkowski problem finding K with $\mu = S_K$.

- Minimize $\int_{S^{n-1}} h_C d\mu$ under the condition $V(C) = 1$
- \triangleright Uniqueness up to translation comes from uniqueness in the Minkowski inequality

Monge-Ampere type differential equation on S^{n-1} :

$$
\det(\nabla^2 h + h I_{n-1}) = \kappa^{-1}
$$

where $h(u) = h_K(u) = \max\{\langle u, x \rangle : x \in K\}$ support function.

Curvature function For any convex body K ,

$$
f_K(u) = \det(\nabla^2 h_K(u) + h_K(u) I_{n-1})
$$

KID KA KERKER E VOOR

for \mathcal{H}^{n-1} a.e. $u \in S^{n-1}$

Decomposition of Surface area measure

Lebesgue's decomposition of S_K for a convex body K $S_K = S_K^a + S_K^s$ where S_K^s singular

$$
dS_K^a = f_K d\mathcal{H}^{n-1}
$$

KORKAR KERKER ST VOOR

Minkowski problem for curvature functions Given positive continuous f on S^{n-1} $f = f_K$ for a convex body $K \iff \int_{S^{n-1}} u \cdot f(u) du = o$

Regularity theory of Monge-Ampere Given $dS_K = f_K d\mathcal{H}^{n-1}$, $f_K > 0$ **►** f_K is C^{α} for $\alpha \in (0,1] \iff \partial K$ is $C^{2,\alpha}_+$ +

$$
\blacktriangleright f_K \text{ is } C^k \text{ for } k \geq 1 \Longleftrightarrow \partial K \text{ is } C_+^{k+2}
$$

?B-M type inequality for affine surface area? Monika Ludwig, Thomas Wannerer, Andrea Colesanti, K.B.

Affine surface area

$$
\Omega(K)=\int_{S^{n-1}}f_K^{\frac{n}{n+1}}\,d\mathcal{H}^{n-1}=\int_{\partial K}\kappa(x)^{\frac{1}{n+1}}\,d\mathcal{H}^{n-1}(x)
$$

Theorem (Lutwak) If $n = 2$ and $\alpha, \beta > 0$, then

$$
\Omega(\alpha \mathsf{K} + \beta \mathsf{C})^{\frac{3}{2}} \geq \alpha \Omega(\mathsf{K})^{\frac{3}{2}} + \beta \Omega(\mathsf{C})^{\frac{3}{2}},
$$

with equality if and only if K and C are homothetic.

(Counter)example For $n > 3$, there exist o-symmetric K and C

$$
\Omega(K+C)^{\frac{n+1}{n(n-1)}} < \Omega(K)^{\frac{n+1}{n(n-1)}} + \Omega(C)^{\frac{n+1}{n(n-1)}}.
$$

KELK KØLK VELKEN EL 1990

Curvature image bodies

ره

=⇒

Any convex body M in \mathbb{R}^n has a unique Santalo point $s(M) \in \text{int } M$ such that

$$
\min_{z\in \text{int }M}V((M-z)^*)=V((M-s(M))^*).
$$

$$
\int_{S^{n-1}} u \cdot h_{M-s(M)}(u)^{-(n+1)} d\mathcal{H}^{n-1}(u) = o.
$$

Minkowski problem $\implies \exists$ convex body *CM* (curvature image)

$$
f_{CM}(u) = h_{M-s(M)}(u)^{-(n+1)}
$$
 for $u \in S^{n-1}$.

Theorem (Lutwak, Schneider) If K, M convex bodies and $K \subset CM$, then

$$
\Omega(K)\leq \Omega(CM),
$$

KORKARYKERKER POLO

with equality if and only if $K = CM$.

Affine surface area and curvature image bodies Monika Ludwig, Thomas Wannerer, Andrea Colesanti

∂M is $\mathcal{C}_+^2 \Longrightarrow \partial(\mathcal{C}M)$ is \mathcal{C}_+^4 (Monge-Ampere equations).

Theorem

 $\alpha, \beta > 0$ and $\mathcal{N} = \mathcal{C} \mathcal{M}$ for a convex body \mathcal{M} with \mathcal{C}_+^2 boundary. There exists $\delta>0$ such that if the C^4 distance of convex bodies κ and C with C^4 boundary is less than δ from N , then

$$
\Omega(\alpha\mathcal{K}+\beta\mathcal{C})^{\frac{n+1}{n(n-1)}}\geq\alpha\Omega(\mathcal{K})^{\frac{n+1}{n(n-1)}}+\beta\Omega(\mathcal{C})^{\frac{n+1}{n(n-1)}},
$$

KORKAR KERKER SAGA

with equality if and only if K and C are homothetic.

?B-M type inequality for p-affine surface area? Monika Ludwig, Thomas Wannerer, Andrea Colesanti

p-Affine surface area $p \ne -n$ and $o \in \text{intK}$ (Hug, Ludwig)

$$
\Omega_p(K)=\int_{S^{n-1}}h_K^{\frac{n(1-p)}{n+p}}f_K^{\frac{n}{n+p}}\,d\mathcal{H}^{n-1}=\int_{S^{n-1}}(h_K^{n+1}f_K)^{\frac{-p}{n+p}}\,dV_K
$$

Theorem
\n
$$
n = 2, \frac{2}{3} \le p \le 1, \ \alpha, \beta > 0, \ o \in \text{int } K, \ o \in \text{int } C
$$
\n
$$
\Omega_p(\alpha K + \beta L)^{\frac{2+p}{2(2-p)}} \ge \alpha \Omega_p(K)^{\frac{2+p}{2(2-p)}} + \beta \Omega_p(C)^{\frac{2+p}{2(2-p)}}.
$$

If $\frac{2}{3} \leq p < 1$, then equality holds if and only if K and C are dilates.

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

Remark Seems to fail completely if $p < \frac{2}{3}$ $rac{2}{3}$ or $p > 1$

Logarithmic Minkowski problem - Cone volume measure

 $dV_K = \frac{1}{n}$ $\frac{1}{n}$ h_K dS_K - cone volume measure on S^{n-1} if $o \in K$ (Gromov, Milman, 1986) - also called L_0 surface area measure

 \blacktriangleright K polytope, F_1, \ldots, F_k facets, u_i exterior unit normal at F_i

$$
V_K(\lbrace u_i \rbrace) = \frac{h_K(u_i) \mathcal{H}^{n-1}(F_i)}{n} = V(\text{conv}\lbrace o, F_i \rbrace).
$$

 $V_K(S^{n-1}) = V(K).$

Monge-Ampere type differential equation on S^{n-1} for $h=h_K$ if μ has a density function f :

$$
h\det(\nabla^2 h + hI) = f
$$

KELK KØLK VELKEN EL 1990

B. Lutwak, Yang, Zhang solved in the even case

Logarithmic (L_0) Brunn-Minkowski conjecture $\lambda \in [0, 1]$, $o \in \text{int}K$, $\text{int}C$

 $(1 - \lambda)K +_0 \lambda C = \{x \in \mathbb{R}^n : \langle u, x \rangle \leq h_K(u)^{1-\lambda}h_C(u)^{\lambda} \ \forall u \in S^{n-1}\}$

$$
\lambda K +_{0} (1 - \lambda)C \ \subset \ \lambda K + (1 - \lambda)C
$$

Conjecture (Logarithmic Brunn-Minkowski conjecture) $\lambda \in (0,1)$, K, C are o-symmetric

$$
V((1 - \lambda)K +_0 \lambda C) \geq V(K)^{1-\lambda}V(C)^{\lambda}
$$

with equality iff K and C have dilated direct summands.

Conjecture (Logarithmic Minkowski conjecture) For o-symmetric K, C, if $V(K) = V(C)$, then

$$
\int_{S^{n-1}} \log h_C dV_K \geq \int_{S^{n-1}} \log h_K dV_K,
$$

with equality iff K and C have dilated direct [su](#page-10-0)[m](#page-10-0)m[a](#page-11-0)[n](#page-12-0)[ds.](#page-0-0)

Known cases of the logarithmic B-M conjecture 1

Interesting for any log-concave measure (like Gaussian) instead of volume

log B-M conjecture for volume \Longrightarrow log B-M conjecture for any log-concave measure (Saroglou)

- \triangleright n = 2 for volume (Stancu + BLYZ)
- \triangleright K and C are unconditional for any log-concave measure follows directly from Prékopa-Leindler (Bollobás&Leader + Cordero-Erausquin&Fradelizi&Maurey + Saroglou on coordinatewise product)
- \triangleright K and C are dilates for the Gaussian measure (Cordero-Erausquin&Fradelizi&Maurey on B-conjecture)
- Holds for the volume in $\mathbb{R}^{2n} = \mathbb{C}^n$ if K and C are complex convex bodies (Rotem)

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

Logarithmic B-M conjecture for almost ellipsoids

Chen, Huang, Li, Liu verified logarithmic B-M conjecture based on a result by Milman-Kolesnikov if K is close to be an ellipsoid: $\exists \varepsilon_n > 0$ such that if K, C o-symmetric with $V(K) = V(C)$ and $E \subset K \subset (1+\varepsilon_n)E$ for an ellipsoid E, then

$$
\int_{S^{n-1}} \log h_C dV_K \geq \int_{S^{n-1}} \log h_K dV_K,
$$

KORKAR KERKER SAGA

with equality iff $C = K$.

Consequences of the log-B-M conjecture - Gardner-Zvavitch Conjecture

Livshyts, Marsiglietti, Nayar, Zvavitch logarithmic B-M conjecture \implies Gardner-Zvavitch Conjecture

$$
\gamma(\alpha\mathcal{K}+(1-\alpha)\mathcal{C})^{\frac{1}{n}}\geq\alpha\gamma(\mathcal{K})^{\frac{1}{n}}+(1-\alpha)\gamma(\mathcal{C})^{\frac{1}{n}}
$$

for o -symmetric K, \bar{C} and the Gaussian measure γ on $\mathbb{R}^n.$ (γ can be replaced by any even log-concave measure)

Theorem (Kolesnikov, Livshyts) $\int_K x \, d\gamma(x) = o$ and $\int_C x \, d\gamma(x) = o \implies$ $\gamma(\alpha\mathsf{K} + (1-\alpha)\mathsf{C})^{\frac{1}{2n}} \geq \alpha \gamma(\mathsf{K})^{\frac{1}{2n}} + (1-\alpha)\gamma(\mathsf{C})^{\frac{1}{2n}}$

KORKAR KERKER SAGA

 L_p surface area measures

L_p surface area measures (Lutwak 1990) $p \in \mathbb{R}$

$$
dS_{K,p} = h_K^{1-p} dS_K = nh_K^{-p} dV_K
$$

Examples

 $S_{K,1} = S_K$

$$
\blacktriangleright S_{K,0}=nV_K
$$

► $S_{K,-n}$ related to $SL(n)$ invariant $f_K(u)h_K(u)^{n+1}$

Theorem (Chou&Wang,Chen&Li&Zhu,B&Bianchi&Colesanti) If $p > 0$, $p \neq 1$, n, then any finite Borel measure μ on S^{n-1} not concentrated on any closed hemisphere is of the form $\mu = S_{K,p}$. Remark

Minimize $\int_{S^{n-1}} h_C^p$ $\frac{P}{C}$ d μ under the condition $V(C) = 1$

 \triangleright Conjectured to be unique in the even case if $0 < p < 1$

 L_p Brunn-Minkowski inequality/conjecture $p > 0, \lambda \in (0, 1), o \in \text{intK}, \text{intC}$ $\lambda K +_{p} (1 - \lambda)C = \{x \in \mathbb{R}^{n} : \langle u, x \rangle^{p} \leq \lambda h_{K}(u)^{p} + (1 - \lambda)h_{C}(u)^{p} \ \forall u\}$ $\rho \geq 1$ $h_{\lambda K +_\rho(1-\lambda)C} = \bigl(\lambda h_K^{\rho} + (1-\lambda) h_C^{\rho}$ $\binom{p}{C}^{1/p}$

 L_p Brunn-Minkowski inequality/conjecture

$$
V(\lambda K +_{p} (1-\lambda)C)^{\frac{p}{n}} \geq \lambda V(K)^{\frac{p}{n}} + (1-\lambda)V(C)^{\frac{p}{n}}
$$

with equality iff K and C are dilated. Equivalent

$$
V(\lambda K +_{\rho} (1-\lambda)C) \geq V(K)^{\lambda}V(C)^{1-\lambda}
$$

Theorem ($p > 1$, Firey, 1962)

 L_p Brunn-Minkowski inequality holds if $o \in \text{int } K$, int C

Conjecture $(0 < p < 1$, BLYZ, 2012)

 L_p Brunn-Minkowski inequality holds if K and C are o-symmetric. $L_0 \Longrightarrow L_p$ for $0 < p < 1$ $0 < p < 1$, $L_1 \Longrightarrow L_p$ for $p > 1$ The L_p Minkowski conjecture for $p_0 < p < 1$

$$
p_0=1-\tfrac{c}{n^{3/2}}
$$

Theorem (Chen, Huang, Li, Liu) $p_0 < p < 1$, K, C o-symmetric

$$
V(\lambda K +_{\rho} (1-\lambda)C) \geq V(K)^{\lambda}V(C)^{1-\lambda}
$$

Idea
$$
\partial K
$$
, ∂C are C_+^2 and $S_{K,p} = S_{C,p} \implies K = C$

Step 1 (Kolesnikov, Milman) ∂M is $\mathcal{C}^2_+,\, \|h_{\mathcal{K}}-h_M\|_{\mathcal{C}^2}<\varepsilon_M$ and $\|h_{\mathcal{C}}-h_M\|_{\mathcal{C}^2}<\varepsilon_M$ for $\varepsilon_M>0$ (spectral gap for Hilbert operator)

KORKARYKERKER POLO

Step 2 (Chen, Huang, Li, Liu) Schauder estimates to get global

The Kolesnikov, Milman approach

$$
D^2h = \nabla^2h + hI_{n-1} \text{ for } h \in C^2(S^{n-1})
$$

Mixed discriminant For $h_1, \ldots, h_{n-1} \in C^2(S^{n-1})$

$$
S(h_1,\ldots,h_{n-1})=D_{n-1}(D^2h_1,\ldots,D^2h_{n-1})
$$

Hilbert-Brunn-Minkowski operator $\partial K C_+^2$, $z \in C^2(S^{n-1})$

$$
L_K z = \frac{S(zh_K, h_K, \ldots, h_K)}{S(h_K, \ldots, h_K)} - z
$$

Theorem (Hilbert-Kolesnikov-Milman) $L_{\mathcal{K}}:\ \mathcal{C}^2(S^{n-1}) \to \mathcal{C}(S^{n-1})$ elliptic with self-adjoint extension to $L^2(dV_K)$

KELK KØLK VELKEN EL 1990

Spectral properties of $-L_K$

Trivial eigenvalues of $-L_K$

- $\lambda_0(-L_K) = 0$ (corresponding to constant functions)
- \blacktriangleright linear functions (that are odd) have eigenvalue 1 with multiplicity n

Theorem (Hilbert) $K \in \mathcal{K}^2_+ \Longrightarrow \lambda_1(-L_K) \geq 1$ Remark: Equivalent with Brunn-Minkowski inequality

Fact $\lambda_{1,e}(-L_K) = \lambda_{n+1}(-L_K)$ for $K \in \mathcal{K}^2_{+,e}$ $\lambda_{1,e}$ =first positive eigenvalue when restricted to even functions Theorem (Kolesnikov, Milman) $p \in [0, 1)$ local L_p-Brunn-Minkowski conjecture \Longleftrightarrow $\lambda_{1,e}(-L_K) \geq \frac{n-p}{n-1}$ $\frac{n-p}{n-1}$ for $\forall K \in \mathcal{K}^2_{+,e}$

KORKAR KERKER SAGA

Eli Putterman's formulation

Equivalent to L_p B-M conjecture $p \in [0, 1)$, K, L o-symmetric

$$
V(K)\left((n-1)V(L[2], K[n-2]) + \frac{1-p}{n}\int_{S^{n-1}}\frac{h_L^2}{h_K}\,dS_K\right) \le (n-p)V(L, K[n-1])^2.
$$

- If $p = 1$, then we have Minkowski's second inequality
- ► For $p \in [0, 1)$, the conjecture is stronger than Minkowski's second inequality because

$$
V(K) \cdot \frac{1}{n} \int_{S^{n-1}} \frac{h_L^2}{h_K} dS_K \geq V(L, K[n-1])^2
$$

by Hölder's inequality